Skip to main content
Log in

Comparison of Cylindrical Interplanetary Flux-Rope Model Fitting with Different Boundary Pitch-Angle Treatments

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Interplanetary flux ropes (IFRs) observed in the solar wind have been investigated through application of the Lundquist model, which is a cylindrical flux-rope model with a constant-\(\alpha \) force-free magnetic-field model. This study evaluated two Lundquist-model fitting methods by applying them to magnetic-obstacle (MO) events observed by the Wind and Solar TErrestrial RElations Observatory (STEREO) spacecraft and by comparing the results. In one method, the pitch angle of the magnetic field at the IFR boundary is assumed to be \(90^{\circ}\), whereas in the other method this restriction is relaxed and the pitch angle is handled as a free parameter [\(\alpha _{\mathrm{p}} \)]. We found that the angle between the axial and radial directions in radial tangential normal (RTN) coordinates (cone angle) and the magnetic flux of the IFR were significantly different for approximately 30% of these events. However, both methods yielded similar values for the direction of the IFR axis projected onto the T–N plane in the RTN coordinates (tilt angle). We also found that the statistical distribution of \(\alpha _{\mathrm{p}}\), which was estimated using the generalized method, shows a spread of \(34^{\circ}\) centered at \(82^{\circ}\), implying that a highly twisted magnetic-field line surrounds the surface of the IFR for approximately 60% of the events. On the other hand, it was noted that a significant number of events (approximately 25%) have a small \(\alpha _{\mathrm{p}}\) (\({<}\,60^{\circ}\)). These results prove that it is better to use the generalized method than the conventional method for solving the cone angle, magnetic flux, or pitch angle of the flux rope, which would lead to a more accurate derivation of the properties of IFRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Acuña, M.H., Curtis, D., Scheifele, J.L., Russell, C.T., Schroeder, P., Szabo, A., Luhmann, J.G.: 2008, The STEREO/IMPACT magnetic field experiment. Space Sci. Rev. 136, 203. DOI .

    Article  ADS  Google Scholar 

  • Aulanier, G., Janvier, M., Schmieder, B.: 2012, The standard flare model in three dimensions I. Strong-to-weak shear transition in post-flare loops. Astron. Astrophys. 543, A110. DOI .

    Article  ADS  Google Scholar 

  • Burlaga, L.F.: 1988, Magnetic clouds and force-free fields with constant alpha. J. Geophys. Res. 93, 7217. DOI .

    Article  ADS  Google Scholar 

  • Dasso, S., Mandrini, C.H., Démoulin, P., Farrugia, C.J.: 2003, Magnetic helicity analysis of an interplanetary twisted flux tube. J. Geophys. Res. 108, 1362. DOI .

    Article  Google Scholar 

  • Galvin, A.B., Kistler, L.M., Popecki, M.A., Farrugia, C.J., Simunac, K.D.C., Ellis, L., Möbius, E., Lee, M.A., Boehm, M., Carroll, J., Crawshaw, A., Conti, M., Demaine, P., Ellis, S., Gaidos, J.A., Googins, J., Granoff, M., Gustafson, A., Heirtzler, D., King, B., Knauss, U., Levasseur, J., Longworth, S., Singer, K., Turco, S., Vachon, P., Vosbury, M., Widholm, M., Blush, L.M., Karrer, R., Bochsler, P., Daoudi, H., Etter, A., Fischer, J., Jost, J., Opitz, A., Sigrist, M., Wurz, P., Klecker, B., Ertl, M., Seidenschwang, E., Wimmer-Schweingruber, R.F., Koeten, M., Thompson, B., Steinfeld, D.: 2008, The plasma and suprathermal ion composition (PLASTIC) investigation on the STEREO observatories. Space Sci. Rev. 136, 437. DOI .

    Article  ADS  Google Scholar 

  • Goldstein, H.: 1983, On the field configuration in magnetic clouds. In: Neugebauer, M. (ed.) SolarWind Five, NASA CP-2280, 731.

    Google Scholar 

  • Gopalswamy, N., Yashiro, S., Akiyama, S., Xie, H.: 2017, Estimation of reconnection flux using post-eruption arcades and its relevance to magnetic clouds at 1 AU. Solar Phys. 292, 65. DOI .

    Article  ADS  Google Scholar 

  • Gulisano, A.M., Dasso, S., Mandrini, C.H., Démoulin, P.: 2005, J. Atmos. Solar-Terr. Phys. 67, 1761. DOI .

    Article  ADS  Google Scholar 

  • Hidalgo, M.A., Cid, C., Viñas, A.F., Sequeiros, J.: 2002, A non-force-free approach to the topology of magnetic clouds in the solar wind. J. Geophys. Res. 106, 1002. DOI .

    Article  Google Scholar 

  • Hu, Q., Sonnerup, B.U.Ö.: 2002, Reconstruction of magnetic clouds in the solar wind: Orientations and configurations. J. Geophys. Res. 107, 1142. DOI .

    Article  Google Scholar 

  • Janvier, M., Dasso, S., Démoulin, P., Masías-Meza, J.J., Lugaz, N.: 2015, Comparing generic models for interplanetary shocks and magnetic clouds axis configurations at 1 AU. J. Geophys. Res. 120, 3328. DOI .

    Article  Google Scholar 

  • Kahler, S.W., Krucker, S., Szabo, A.: 2011, Solar energetic electron probes of magnetic cloud field line lengths. J. Geophys. Res. 116, A01104. DOI .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Berdichevsky, D.B., Ferguson, T.J.: 2003, Estimated errors in magnetic cloud model fit parameters with force-free cylindrically symmetric assumptions. J. Geophys. Res. 108, 1356. DOI .

    Article  Google Scholar 

  • Lepping, R.P., Burlaga, L.F., Jones, J.A.: 1990, Magnetic field structure of interplanetary magnetic clouds at 1 AU. J. Geophys. Res. 95, 11957. DOI .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Acuña, M.H., Burlaga, L.F., Farrell, W.M., Slavin, J.A., Schatten, K.H., Mariani, F., Ness, N.F., Neubauer, F.M., Whang, Y.C., Byrnes, J.B., Kennon, R.S., Panetta, P.V., Sheifele, J., Worley, E.M.: 1995, The wind magnetic field investigation. Space Sci. Rev. 71, 207. DOI .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Berdichevsky, D.B., Wu, C.-C., Szabo, A., Narock, T., Mariani, F., Lazarus, A.J., Quivers, A.J.: 2006, A summary of WIND magnetic clouds for years 1995 – 2003: Model-fitted parameters, associated errors and classifications. Ann. Geophys. 24, 215. DOI .

    Article  ADS  Google Scholar 

  • Liu, Y.A., Liu, Y.D., Hu, H., Wang, R., Zhao, X., Hansen, W.W.: 2018, Multi-spacecraft observations of the rotation and nonradial motion of a CME flux rope causing an intense geomagnetic storm. Astrophys. J. 854, 126. DOI .

    Article  ADS  Google Scholar 

  • Longcope, D., Beveridge, C., Qiu, J., Ravindra, B., Barnes, G., Dasso, S.: 2007, Modeling and measuring the flux reconnected and ejected by the two-ribbon flare/CME event on 7 November 2004. Solar Phys. 244, 45. DOI .

    Article  ADS  Google Scholar 

  • Lopez, R.: 1987, Solar cycle invariances in solar wind proton temperature relationships. J. Geophys. Res. 92, 11189. DOI .

    Article  ADS  Google Scholar 

  • Lundquist, S.: 1950, Magnetohydrostatic fields. Ark. Fys. 2, 361.

    MathSciNet  MATH  Google Scholar 

  • Lynch, B.J., Gruesbeck, J.R., Zurbuchen, T.H., Antiochos, S.K.: 2005, Solar cycle-dependent helicity transport by magnetic clouds. J. Geophys. Res. 110, A08107. DOI .

    Article  ADS  Google Scholar 

  • Marubashi, K.: 1986, Structure of the interplanetary magnetic clouds and their solar origins. Adv. Space Res. 6, 335. DOI .

    Article  ADS  Google Scholar 

  • Marubashi, K.: 2002, Interplanetary magnetic flux ropes. J. Commun. Res. Lab. 49, 41.

    Google Scholar 

  • Marubashi, K., Cho, K.-S.: 2015, Non-uniqueness of the geometry of interplanetary magnetic flux ropes obtained from model-fitting. Sun Geosph. 10, 119.

    ADS  Google Scholar 

  • Marubashi, K., Lepping, R.P.: 2007, Long-duration magnetic clouds: A comparison of analyses using torus- and cylinder-shaped flux rope models. Ann. Geophys. 25, 2453. DOI .

    Article  ADS  Google Scholar 

  • Marubashi, K., Akiyama, S., Yashiro, S., Gopalswamy, N., Cho, K.S., Park, Y.D.: 2015, Geometrical relationship between interplanetary flux ropes and their solar sources. Solar Phys. 290, 1371. DOI .

    Article  ADS  Google Scholar 

  • Nieves-Chinchilla, T., Vourlidas, A., Raymond, J.C., Linton, M.G., Al-haddad, N., Savani, N.P., Szabo, A., Hidalgo, M.A.: 2018, Understanding the internal magnetic field configurations of ICMEs using more than 20 years of wind observations. Solar Phys. 293, 25. DOI .

    Article  ADS  Google Scholar 

  • Ogilvie, K., Chornay, D., Fritzenreiter, R., Hunsaker, F., Keller, J., Lobell, J., Miller, G., Scudder, J., Sittler, E.C. Jr., Torbert, R., Bodet, D., Needell, G., Lazarus, A., Steinberg, J., Tappan, J., Mavretic, A., Gergin, E.: 1995, SWE, a comprehensive plasma instrument for the WIND spacecraft. Space Sci. Rev. 71, 55. DOI .

    Article  ADS  Google Scholar 

  • Qiu, J., Hu, Q., Howard, T.A., Yurchyshyn, V.B.: 2007, On the magnetic flux budget in low-corona magnetic reconnection and interplanetary coronal mass ejections. Astrophys. J. 659, 758. DOI .

    Article  ADS  Google Scholar 

  • Riley, P., Linker, J.A., Lionello, R., Mikicá, Z., Odstrcil, D., Hidalgo, M.A., Cid, C., Hu, Q., Lepping, R.P., Lynch, B.J., Rees, A.: 2004, Fitting flux ropes to a global MHD solution: a comparison of techniques. J. Atmos. Solar-Terr. Phys. 66, 1321. DOI .

    Article  ADS  Google Scholar 

  • Vandas, M., Geranios, A.: 2001, November 17 – 18, 1975, event: A clue to an internal structure of magnetic clouds? J. Geophys. Res. 106, 1849. DOI .

    Article  ADS  Google Scholar 

  • Wang, Y., Zhou, Z., Shen, C., Liu, R., Wang, S.: 2015, Investigating plasma motion of magnetic clouds at 1 AU through a velocity-modified cylindrical force-free flux rope model. J. Geophys. Res. 120, 1543. DOI .

    Article  Google Scholar 

  • Yurchyshyn, V.B., Hu, Q., Lepping, R.P., Lynch, B.J., Krall, J.: 2007, Orientations of LASCO halo CMEs and their connection to the flux rope structure of interplanetary CMEs. Adv. Space Res. 40, 1821. DOI .

    Article  ADS  Google Scholar 

  • Zhao, X.P., Hoeksema, J.T.: 1998, Central axial field direction in magnetic clouds and its relation to southward interplanetary magnetic field events and dependence on disappearing solar filaments. J. Geophys. Res. 103, 2077. DOI .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study made use of the Wind plasma and magnetic-field data, and the STEREO plasma and magnetic-field data throughout. We thank the Wind and STEREO teams for their extensive efforts directed to continuous measurements, and for providing their data online.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Nishimura.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishimura, N., Marubashi, K. & Tokumaru, M. Comparison of Cylindrical Interplanetary Flux-Rope Model Fitting with Different Boundary Pitch-Angle Treatments. Sol Phys 294, 49 (2019). https://doi.org/10.1007/s11207-019-1435-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-019-1435-5

Keywords

Navigation