Skip to main content
Log in

Comparative Study of Microwave Polar Brightening, Coronal Holes, and Solar Wind over the Solar Poles

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We compared the long-term variation (1992 – 2017) in solar polar brightening observed with the Nobeyama Radioheliograph, the polar solar-wind velocity with interplanetary scintillation observations at the Institute for Space-Earth Environmental Research, and the coronal-hole distribution computed by potential-field calculations of the solar corona using synoptic magnetogram data obtained at the National Solar Observatory/Kitt Peak. First, by comparing the solar-wind velocity [\(V\)] and the brightness temperature [\(T_{\mathrm{b}}\)] in the polar region, we found good correlation coefficients (CCs) between \(V\) and \(T_{\mathrm{b}}\) in the polar regions, CC = 0.91 (0.83) for the northern (southern) polar region, and we obtained the \(V\)\(T_{ \mathrm{b}}\) relationship as \(V = 12.6\) \((T_{\mathrm{b}}-10{,}667)^{1/2}+432\). We also confirmed that the CC of \(V\)\(T_{\mathrm{b}}\) is higher than those of \(V\)\(B\) and \(V\)\(B/f\), where \(B\) and \(f\) are the polar magnetic-field strength and magnetic-flux expansion rate, respectively. These results indicate that \(T_{\mathrm{b}}\) is a more direct parameter than \(B\) or \(B/f\) for expressing solar-wind velocity. Next, we analyzed the long-term variation of the polar brightening and its relation to the area of the polar coronal hole [\(A\)]. As a result, we found that the polar brightening matches the probability distribution of the predicted coronal hole and that the CC between \(T_{\mathrm{b}}\) and \(A\) is remarkably high, CC = 0.97. This result indicates that the polar brightening is strongly coupled to the size of the polar coronal hole. Therefore, the reasonable correlation of \(V\) – \(T_{\mathrm{b}}\) is explained by \(V\) – \(A\). In addition, by considering the anti-correlation between \(A\) and \(f\) found in a previous study, we suggest that the \(V\) – \(T_{\mathrm{b}}\) relationship is another expression of the Wang–Sheeley relationship (\(V\) – \(1/f\)) in the polar regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Akiyama, S., Gopalswamy, N., Yashiro, S., Mäkelä, P.: 2013, A study of coronal holes observed by SoHO/EIT and the Nobeyama radioheliograph. Publ. Astron. Soc. Japan 65, S15. DOI . ADS .

    Article  ADS  Google Scholar 

  • Altschuler, M.D., Newkirk, G.: 1969, Magnetic fields and the structure of the solar corona. I: Methods of calculating coronal fields. Solar Phys. 9, 131. DOI . ADS .

    Article  ADS  Google Scholar 

  • Babin, A.N., Gopasiuk, S.I., Efanov, V.A., Kotov, V.A., Moiseev, I.G., Nesterov, N.S., Tsap, T.T.: 1976, Intensification of magnetic fields, millimeter-range radio brightness, and H-alpha activity in polar regions on the Sun. Izv. Krym. Astrofiz. Obs. 55, 3. ADS .

    ADS  Google Scholar 

  • Bame, S.J., McComas, D.J., Barraclough, B.L., Phillips, J.L., Sofaly, K.J., Chavez, J.C., Goldstein, B.E., Sakurai, R.K.: 1992, The ULYSSES solar wind plasma experiment. Astron. Astrophys. Suppl. Ser. 92, 237. ADS .

    ADS  Google Scholar 

  • Efanov, V.A., Moiseev, I.G., Nesterov, N.S., Stewart, R.T.: 1980, Radio emission of the solar polar regions at millimeter wavelengths. In: Kundu, M.R., Gergely, T.E. (eds.) Radio Physics of the Sun, IAU Symp. 86, Reidel, Dordrecht, 141. ADS .

    Chapter  Google Scholar 

  • Fujiki, K., Kojima, M., Tokumaru, M., Ohmi, T., Yokobe, A., Hayashi, K., McComas, D.J., Elliott, H.A.: 2003, How did the solar wind structure change around the solar maximum? From interplanetary scintillation observation. Ann. Geophys. 21, 1257. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fujiki, K., Hirano, M., Kojima, M., Tokumaru, M., Baba, D., Yamashita, M., Hakamada, K.: 2005, Relation between solar wind velocity and properties of its source region. Adv. Space Res. 35, 2185. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fujiki, K., Tokumaru, M., Iju, T., Hakamada, K., Kojima, M.: 2015, Relationship between solar-wind speed and coronal magnetic-field properties. Solar Phys. DOI . ADS .

    Article  Google Scholar 

  • Fujiki, K., Tokumaru, M., Hayashi, K., Satonaka, D., Hakamada, K.: 2016, Long-term trend of solar coronal hole distribution from 1975 to 2014. Astrophys. J. Lett. 827, L41. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gelfreikh, G.B., Makarov, V.I., Tlatov, A.G., Riehokainen, A., Shibasaki, K.: 2002, A study of the development of global solar activity in the 23rd solar cycle based on radio observations with the Nobeyama radio heliograph. I. Latitude distribution of the active and dark regions. Astron. Astrophys. 389, 618. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Shibasaki, K., Salem, M.: 2000, Microwave enhancement in coronal holes: Statistical properties. Astron. Astrophys. 21, 413. DOI . ADS .

    Article  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Akiyama, S.: 2016, Unusual polar conditions in Solar Cycle 24 and their implications for Cycle 25. Astrophys. J. Lett. 823, L15. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Shibasaki, K., Thompson, B.J., Gurman, J.B., Deforest, C.E.: 1999a, In: Suess, S.T., Gary, G.A., Nerney, S.F. (eds.) Is the Chromosphere Hotter in Coronal Holes? CS-471, AIP, Melville, 277. DOI . ADS .

    Chapter  Google Scholar 

  • Gopalswamy, N., Shibasaki, K., Thompson, B.J., Gurman, J., DeForest, C.: 1999b, Microwave enhancement and variability in the elephant’s trunk coronal hole: Comparison with SOHO observations. J. Geophys. Res. 104, 9767. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Mäkelä, P., Michalek, G., Shibasaki, K., Hathaway, D.H.: 2012, Behavior of Solar Cycles 23 and 24 revealed by microwave observations. Astrophys. J. Lett. 750, L42. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Mäkelä, P., Yashiro, S., Akiyama, S.: 2018, Long-term solar activity studies using microwave imaging observations and prediction for Cycle 25. J. Atmos. Solar-Terr. Phys. 176, 26. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hakamada, K.: 1995, A simple method to compute spherical harmonic coefficients for the potential model of the coronal magnetic field. Solar Phys. 159, 89. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hewish, A., Scott, P.F., Wills, D.: 1964, Interplanetary scintillation of small diameter radio sources. Nature 203, 1214. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kim, S., Park, J.-Y., Kim, Y.-H.: 2017, Solar cycle variation of microwave polar brightening and EUV coronal hole observed by Nobeyama radioheliograph and SDO/AIA. J. Korean Astron. Soc. 50, 125. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kojima, M., Kakinuma, T.: 1990, Solar cycle dependence of global distribution of solar wind speed. Space Sci. Rev. 53, 173. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kojima, M., Tokumaru, M., Watanabe, H., Yokobe, A., Asai, K., Jackson, B.V., Hick, P.L.: 1998, Heliospheric tomography using interplanetary scintillation observations 2. Latitude and heliocentric distance dependence of solar wind structure at 0.1 – 1 AU. J. Geophys. Res. 103, 1981. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kojima, M., Fujiki, K., Ohmi, T., Tokumaru, M., Yokobe, A., Hakamada, K.: 1999, Low-speed solar wind from the vicinity of solar active regions. J. Geophys. Res. 104, 16993. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kosugi, T., Ishiguro, M., Shibasaki, K.: 1986, Polar-cap and coronal-hole-associated brightenings of the Sun at millimeter wavelengths. Publ. Astron. Soc. Japan 38, 1. ADS .

    ADS  Google Scholar 

  • Krieger, A.S., Timothy, A.F., Roelof, E.C.: 1973, A coronal hole and its identification as the source of a high velocity solar wind stream. Solar Phys. 29, 505. DOI . ADS .

    Article  ADS  Google Scholar 

  • McComas, D.J., Riley, P., Gosling, J.T., Balogh, A., Forsyth, R.: 1998, Ulysses’ rapid crossing of the polar coronal hole boundary. J. Geophys. Res. 103, 1955. DOI . ADS .

    Article  ADS  Google Scholar 

  • McComas, D.J., Barraclough, B.L., Funsten, H.O., Gosling, J.T., Santiago-Muñoz, E., Skoug, R.M., Goldstein, B.E., Neugebauer, M., Riley, P., Balogh, A.: 2000, Solar wind observations over Ulysses’ first full polar orbit. J. Geophys. Res. 105, 10419. DOI . ADS .

    Article  ADS  Google Scholar 

  • McComas, D.J., Elliott, H.A., Gosling, J.T., Reisenfeld, D.B., Skoug, R.M., Goldstein, B.E., Neugebauer, M., Balogh, A.: 2002, Ulysses’ second fast-latitude scan: Complexity near solar maximum and the reformation of polar coronal holes. Geophys. Res. Lett. 29, 1290. DOI . ADS .

    Article  ADS  Google Scholar 

  • McComas, D.J., Ebert, R.W., Elliott, H.A., Goldstein, B.E., Gosling, J.T., Schwadron, N.A., Skoug, R.M.: 2008, Weaker solar wind from the polar coronal holes and the whole sun. Geophys. Res. Lett. 35, 18103. DOI . ADS .

    Article  ADS  Google Scholar 

  • Nakajima, H., Nishio, M., Enome, S., Shibasaki, K., Takano, T., Hanaoka, Y., Torii, C., Sekiguchi, H., Bushimata, T., Kawashima, S., Shinohara, N., Irimajiri, Y., Koshiishi, H., Kosugi, T., Shiomi, Y., Sawa, M., Kai, K.: 1994, The Nobeyama radioheliograph. IEEE Proc. 82, 705. ADS .

    Article  ADS  Google Scholar 

  • Nitta, N.V., Sun, X., Hoeksema, J.T., DeRosa, M.L.: 2014, Solar cycle variations of the radio brightness of the solar polar regions as observed by the Nobeyama radioheliograph. Astrophys. J. Lett. 780, L23. DOI . ADS .

    Article  ADS  Google Scholar 

  • Nolte, J.T., Krieger, A.S., Timothy, A.F., Gold, R.E., Roelof, E.C., Vaiana, G., Lazarus, A.J., Sullivan, J.D., McIntosh, P.S.: 1976, Coronal holes as sources of solar wind. Solar Phys. 46, 303. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ohmi, T., Kojima, M., Yokobe, A., Tokumaru, M., Fujiki, K., Hakamada, K.: 2001, Polar low-speed solar wind at the solar activity maximum. J. Geophys. Res. 106, 24923. DOI . ADS .

    Article  ADS  Google Scholar 

  • Phillips, J.L., Bame, S.J., Feldman, W.C., Goldstein, B.E., Gosling, J.T., Hammond, C.M., McComas, D.J., Neugebauer, M., Scime, E.E., Suess, S.T.: 1995, Ulysses solar wind plasma observations at high southerly latitudes. Science 268, 1030. DOI . ADS .

    Article  ADS  Google Scholar 

  • Reiss, M.A., Temmer, M., Veronig, A.M., Nikolic, L., Vennerstrom, S., Schöngassner, F., Hofmeister, S.J.: 2016, Verification of high-speed solar wind stream forecasts using operational solar wind models. Space Weather 14, 495. DOI . ADS .

    Article  ADS  Google Scholar 

  • Rotter, T., Veronig, A.M., Temmer, M., Vršnak, B.: 2015, Real-time solar wind prediction based on SDO/AIA coronal hole data. Solar Phys. 290, 1355. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schatten, K.H., Wilcox, J.M., Ness, N.F.: 1969, A model of interplanetary and coronal magnetic fields. Solar Phys. 6, 442. DOI . ADS .

    Article  ADS  Google Scholar 

  • Selhorst, C.L., Silva, A.V.R., Costa, J.E.R., Shibasaki, K.: 2003, Temporal and angular variation of the solar limb brightening at 17 GHz. Astron. Astrophys. 401, 1143. DOI . ADS .

    Article  ADS  Google Scholar 

  • Shibasaki, K.: 2013, Long-term global solar activity observed by the Nobeyama radioheliograph. Publ. Astron. Soc. Japan 65, S17. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tokumaru, M., Fujiki, K., Iju, T.: 2015, North–South asymmetry in global distribution of the solar wind speed during 1985 – 2013. J. Geophys. Res. 120, 3283. DOI . ADS .

    Article  Google Scholar 

  • Tokumaru, M., Kojima, M., Fujiki, K.: 2010, Solar cycle evolution of the solar wind speed distribution from 1985 to 2008. J. Geophys. Res. 115, A04102. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tokumaru, M., Satonaka, D., Fujiki, K., Hayashi, K., Hakamada, K.: 2017, Relation between coronal hole areas and solar wind speeds derived from interplanetary scintillation measurements. Solar Phys. 292, 41. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R. Jr.: 1990, Solar wind speed and coronal flux-tube expansion. Astrophys. J. 355, 726. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zirin, H., Baumert, B.M., Hurford, G.J.: 1991, The microwave brightness temperature spectrum of the quiet sun. Astrophys. J. 370, 779. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

NoRH was operated by Nobeyama Solar Radio Observatory (NSRO), National Astronomical Observatory Japan (NAOJ) in 1992 – 2015. Since then, it has been operated by the International Consortium for the Continued Operation of Nobeyama Radioheliograph (ICCON). ICCON consists of ISEE/Nagoya University, NAOC, KASI, NICT, and GSFC/NASA. The IPS observations are carried out under the solar-wind program of ISEE/Nagoya University. We are grateful to NSO/KP for the use of their synoptic magnetograms. We also thank COHOWeb/NASA for the use of Ulysses/SWOOPS data. This work is partially supported by JSPS KAKENHI, Grant Number 18H01253.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken’ichi Fujiki.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujiki, K., Shibasaki, K., Yashiro, S. et al. Comparative Study of Microwave Polar Brightening, Coronal Holes, and Solar Wind over the Solar Poles. Sol Phys 294, 30 (2019). https://doi.org/10.1007/s11207-019-1418-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-019-1418-6

Keywords

Navigation