Skip to main content
Log in

Geomagnetic Effects of Corotating Interaction Regions

  • Earth-affecting Solar Transients
  • Published:
Solar Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We present an analysis of the geoeffectiveness of corotating interaction regions (CIRs), employing the data recorded from 25 January to 5 May 2005 and throughout 2008. These two intervals in the declining phase of Solar Cycle 23 are characterised by a particularly low number of interplanetary coronal mass ejections (ICMEs). We study in detail how four geomagnetic-activity parameters (the Dst, Ap, and AE indices, as well as the Dst time derivative, \(\mathrm{dDst}/\mathrm{d}t\)) are related to three CIR-related solar wind parameters (flow speed, \(V\), magnetic field, \(B\), and the convective electric field based on the southward Geocentric solar magnetospheric (GSM) magnetic field component, \(\mathit{VB}_{s}\)) on a three-hour time resolution. In addition, we quantify statistical relationships between the mentioned geomagnetic indices. It is found that Dst is correlated best to \(V\), with a correlation coefficient of \(\mathrm{cc}\approx0.6\), whereas there is no correlation between \(\mathrm{dDst}/\mathrm{d}t\) and \(V\). The Ap and AE indices attain peaks about half a day before the maximum of \(V\), with correlation coefficients ranging from \(\mathrm{cc}\approx0.6\) to \(\mathrm{cc}\approx0.7\), depending on the sample used. The best correlations of Ap and AE are found with \(\mathit{VB}_{s}\) with a delay of 3 h, being characterised by \(\mathrm{cc}\gtrsim 0.6\). The Dst derivative \(\mathrm{dDst}/\mathrm{d}t\) is also correlated with \(\mathit{VB}_{s}\), but the correlation is significantly weaker \(\mathrm{cc}\approx 0.4\) – 0.5, with a delay of 0 – 3 h, depending on the employed sample. Such low values of correlation coefficients indicate that there are other significant effects that influence the relationship between the considered parameters. The correlation of all studied geomagnetic parameters with \(B\) are characterised by considerably lower correlation coefficients, ranging from \(\mathrm{cc}=0.3\) in the case of \(\mathrm{dDst}/\mathrm{d}t\) up to \(\mathrm{cc}=0.56\) in the case of Ap. It is also shown that peak values of geomagnetic indices depend on the duration of the CIR-related structures. The Dst is closely correlated with Ap and AE (\(\mathrm{cc}=0.7\)), Dst being delayed for about 3 h. On the other hand, \(\mathrm{dDst}/\mathrm{d}t\) peaks simultaneously with Ap and AE, with correlation coefficients of 0.48 and 0.56, respectively. The highest correlation (\(\mathrm{cc}=0.81\)) is found for the relationship between Ap and AE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Alves, M.V., Echer, E., Gonzalez, W.D.: 2006, Geoeffectiveness of corotating interaction regions as measured by Dst index. J. Geophys. Res. 111, A07S05. DOI . ADS .

    Article  ADS  Google Scholar 

  • Balogh, A., Gosling, J.T., Jokipii, J.R., Kallenbach, R., Kunow, H.: 1999, Corotating interaction regions. Space Sci. Rev. 89, 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bartels, J., Heck, N.H., Johnston, H.F.: 1939, The three-hour-range index measuring geomagnetic activity. Terr. Magn. Atmos. Electr. 44, 411. DOI . ADS .

    Article  Google Scholar 

  • Borovsky, J.E., Denton, M.H.: 2006, Differences between cme-driven storms and cir-driven storms. J. Geophys. Res. 111, A07S08. DOI .

    ADS  Google Scholar 

  • Burlaga, L.F., Lepping, R.P.: 1977, The causes of recurrent geomagnetic storms. Planet. Space Sci. 25, 1151. DOI . ADS .

    Article  ADS  Google Scholar 

  • Čalogović, J., Vršnak, B., Temmer, M., Veronig, A.M.: 2009, Cosmic ray modulation by corotating interaction regions. In: Gopalswamy, N., Webb, D.F. (eds.) Universal Heliophysical Processes, IAU Symp. 257, 425. DOI . ADS .

    Google Scholar 

  • Crowley, G., Reynolds, A., Thayer, J.P., Lei, J., Paxton, L.J., Christensen, A.B., Zhang, Y., Meier, R.R., Strickland, D.J.: 2008, Periodic modulations in thermospheric composition by solar wind high speed streams. Geophys. Res. Lett. 35, L21106. DOI . ADS .

    Article  ADS  Google Scholar 

  • Davis, T.N., Sugiura, M.: 1966, Auroral electrojet activity index AE and its universal time variations. J. Geophys. Res. 71, 785. DOI . ADS .

    Article  ADS  Google Scholar 

  • Dumbović, M., Vršnak, B., Čalogović, J., Karlica, M.: 2011, Cosmic ray modulation by solar wind disturbances. Astron. Astrophys. 531, A91. DOI . ADS .

    Article  Google Scholar 

  • Dumbović, M., Vršnak, B., Čalogović, J., Župan, R.: 2012, Cosmic ray modulation by different types of solar wind disturbances. Astron. Astrophys. 538, A28. DOI . ADS .

    Article  Google Scholar 

  • Echer, E., Gonzalez, W.D., Alves, M.V.: 2006, Minimum variance analysis of interplanetary coronal mass ejections around Solar Cycle 23 maximum (1998 – 2002). Solar Phys. 233, 249. DOI . ADS .

    Article  ADS  Google Scholar 

  • Emery, B.A., Richardson, I.G., Evans, D.S., Rich, F.J.: 2009, Solar wind structure sources and periodicities of auroral electron power over three solar cycles. J. Atmos. Solar-Terr. Phys. 71, 1157. DOI . ADS .

    Article  ADS  Google Scholar 

  • Finch, I.D., Lockwood, M.L., Rouillard, A.P.: 2008, Effects of solar wind magnetosphere coupling recorded at different geomagnetic latitudes: separation of directly-driven and storage/release systems. Geophys. Res. Lett. 35, L21105. DOI . ADS .

    Article  ADS  Google Scholar 

  • Forbush, S.E.: 1937, On the effects in cosmic-ray intensity observed during the recent magnetic storm. Phys. Rev. 51(12), 1108. DOI .

    Article  ADS  Google Scholar 

  • Gibson, S.E., Kozyra, J.U., de Toma, G., Emery, B.A., Onsager, T., Thompson, B.J.: 2009, If the Sun is so quiet, why is the Earth ringing? A comparison of two solar minimum intervals. J. Geophys. Res. 114, A09105. DOI . ADS .

    ADS  Google Scholar 

  • Gonzalez, W.D., Echer, E., Tsurutani, B.T., Clúa de Gonzalez, A.L., Dal Lago, A.: 2011, Interplanetary origin of intense, superintense and extreme geomagnetic storms. Space Sci. Rev. 158, 69. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Tsurutani, B., Yan, Y.: 2015, Short-term variability of the Sun–Earth system: an overview of progress made during the CAWSES-II period. Prog. Earth Planet. Sci. 2, 13. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gosling, J.T.: 1996, Corotating and transient solar wind flows in three dimensions. Annu. Rev. Astron. Astrophys. 34, 35. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gosling, J.T., Pizzo, V.J.: 1999, Formation and evolution of corotating interaction regions and their three dimensional structure. Space Sci. Rev. 89, 21. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hajra, R., Echer, E., Tsurutani, B.T., Gonzalez, W.D.: 2013, Solar cycle dependence of high-intensity long-duration continuous AE activity (HILDCAA) events, relativistic electron predictors? J. Geophys. Res. 118, 5626. DOI . ADS .

    Article  Google Scholar 

  • Kataoka, R., Pulkkinen, A.: 2008, Geomagnetically induced currents during intense storms driven by coronal mass ejections and corotating interacting regions. J. Geophys. Res. 113, A03S12. DOI . ADS .

    Article  ADS  Google Scholar 

  • Krieger, A.S., Timothy, A.F., Roelof, E.C.: 1973, A coronal hole and its identification as the source of a high velocity solar wind stream. Solar Phys. 29, 505. DOI .

    Article  ADS  Google Scholar 

  • Lee, C.O., Luhmann, J.G., Odstrcil, D., MacNeice, P.J., de Pater, I., Riley, P., Arge, C.N.: 2009, The solar wind at 1 AU during the declining phase of Solar Cycle 23: comparison of 3D numerical model results with observations. Solar Phys. 254, 155. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lei, J., Thayer, J.P., Forbes, J.M., Sutton, E.K., Nerem, R.S.: 2008a, Rotating solar coronal holes and periodic modulation of the upper atmosphere. Geophys. Res. Lett. 35, 10109. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lei, J., Thayer, J.P., Forbes, J.M., Sutton, E.K., Nerem, R.S., Temmer, M., Veronig, A.M.: 2008b, Global thermospheric density variations caused by high-speed solar wind streams during the declining phase of Solar Cycle 23. J. Geophys. Res. 113(A12), A11303. DOI . ADS .

    ADS  Google Scholar 

  • Lei, J., Thayer, J.P., Forbes, J.M., Wu, Q., She, C., Wan, W., Wang, W.: 2008c, Ionosphere response to solar wind high-speed streams. Geophys. Res. Lett. 35, L19105. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lei, J., Thayer, J.P., Wang, W., McPherron, R.L.: 2011, Impact of CIR storms on thermosphere density variability during the solar minimum of 2008. Solar Phys. 274, 427. DOI . ADS .

    Article  ADS  Google Scholar 

  • McComas, D.J., Bame, S.J., Barker, P., Feldman, W.C., Phillips, J.L., Riley, P., Griffee, J.W.: 1998, Solar wind electron proton alpha monitor (swepam) for the advanced composition explorer. Space Sci. Rev. 86, 563. DOI .

    Article  ADS  Google Scholar 

  • Neupert, W.M., Pizzo, V.: 1974, Solar coronal holes as sources of recurrent geomagnetic disturbances. In: Bull. Amer. Astron. Soc. 6, 292.

    Google Scholar 

  • Nolte, J.T., Krieger, A.S., Timothy, A.F., Gold, R.E., Roelof, E.C., Vaiana, G., Lazarus, A.J., Sullivan, J.D., McIntosh, P.S.: 1976, Coronal holes as sources of solar wind. Solar Phys. 46, 303. DOI . ADS .

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during Solar Cycle 23 (1996 – 2009): catalog and summary of properties. Solar Phys. 264, 189. DOI . ADS .

    Article  ADS  Google Scholar 

  • Robbrecht, E., Patsourakos, S., Vourlidas, A.: 2009, No trace left behind: STEREO observation of a coronal mass ejection without low coronal signatures. Astrophys. J. 701, 283. DOI . ADS .

    Article  ADS  Google Scholar 

  • Rostoker, G.: 1972, Geomagnetic indices. Rev. Geophys. Space Phys. 10, 935. DOI . ADS .

    Article  ADS  Google Scholar 

  • Rotter, T., Veronig, A.M., Temmer, M., Vršnak, B.: 2012, Relation between coronal hole areas on the sun and the solar wind parameters at 1 AU. Solar Phys. 281, 793. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schwenn, R., dal Lago, A., Huttunen, E., Gonzalez, W.D.: 2005, The association of coronal mass ejections with their effects near the Earth. Ann. Geophys. 23, 1033. DOI . ADS .

    Article  ADS  Google Scholar 

  • Smith, E.J., Wolfe, J.H.: 1976, Observations of interaction regions and corotating shocks between one and five AU – Pioneers 10 and 11. Geophys. Res. Lett. 3, 137. DOI . ADS .

    Article  ADS  Google Scholar 

  • Smith, C.W., L’Heureux, J., Ness, N.F., Acuña, M.H., Burlaga, L.F., Scheifele, J.: 1998, The ACE magnetic fields experiment. Space Sci. Rev. 86, 613. DOI . ADS .

    Article  ADS  Google Scholar 

  • Stone, E.C., Frandsen, A.M., Mewaldt, R.A., Christian, E.R., Margolies, D., Ormes, J.F., Snow, F.: 1998, The advanced composition explorer. Space Sci. Rev. 86, 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sugiura, M., Wilson, C.R.: 1964, Oscillation of the geomagnetic field lines and associated magnetic perturbations at conjugate points. J. Geophys. Res. 69, 1211. DOI . ADS .

    Article  ADS  MATH  Google Scholar 

  • Tanskanen, E.I., Slavin, J.A., Tanskanen, A.J., Viljanen, A., Pulkkinen, T.I., Koskinen, H.E.J., Pulkkinen, A., Eastwood, J.: 2005, Magnetospheric substorms are strongly modulated by interplanetary high-speed streams. Geophys. Res. Lett. 32, L16104. DOI . ADS .

    Article  ADS  Google Scholar 

  • Temmer, M., Vršnak, B., Veronig, A.M.: 2007, Periodic appearance of coronal holes and the related variation of solar wind parameters. Solar Phys. 241, 371. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D.: 1987, The cause of high-intensity long-duration continuous AE activity (HILDCAAS) – interplanetary Alfven wave trains. Planet. Space Sci. 35, 405. DOI .

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., McPherron, R.L., Gonzalez, W.D., Lu, G., Sobral, J.H.A., Gopalswamy, N.: 2006, Introduction to special section on corotating solar wind streams and recurrent geomagnetic activity. J. Geophys. Res. 111, 1. DOI .

    Google Scholar 

  • Tulasi Ram, S., Lei, J., Su, S.-Y., Liu, C.H., Lin, C.H., Chen, W.S.: 2010, Dayside ionospheric response to recurrent geomagnetic activity during the extreme solar minimum of 2008. Geophys. Res. Lett. 37, L02101. DOI . ADS .

    ADS  Google Scholar 

  • Vennerstroem, S.: 2001, Interplanetary sources of magnetic storms: a statistical study. J. Geophys. Res. 106, 29175. DOI . ADS .

    Article  ADS  Google Scholar 

  • Verbanac, G., Vršnak, B., Veronig, A., Temmer, M.: 2011a, Equatorial coronal holes, solar wind high-speed streams, and their geoeffectiveness. Astron. Astrophys. 526, A20. DOI . ADS .

    Article  ADS  Google Scholar 

  • Verbanac, G., Vršnak, B., Živković, S., Hojsak, T., Veronig, A.M., Temmer, M.: 2011b, Solar wind high-speed streams and related geomagnetic activity in the declining phase of solar cycle 23. Astron. Astrophys. 533, A49. DOI . ADS .

    Article  ADS  Google Scholar 

  • Verbanac, G., Živković, S., Vršnak, B., Bandić, M., Hojsak, T.: 2013, Comparison of geoeffectiveness of coronal mass ejections and corotating interaction regions. Astron. Astrophys. 558, A85. DOI .

    Article  ADS  Google Scholar 

  • Verkhoglyadova, O.P., Tsurutani, B.T., Mannucci, A.J., Mlynczak, M.G., Hunt, L.A., Runge, T.: 2013, Variability of ionospheric TEC during solar and geomagnetic minima (2008 and 2009): external high speed stream drivers. Ann. Geophys. 31, 263. DOI .

    Article  ADS  Google Scholar 

  • Vršnak, B., Temmer, M., Veronig, A.M.: 2007a, Coronal holes and solar wind high-speed streams: I. Forecasting the solar wind parameters. Solar Phys. 240, 315. DOI .

    Article  ADS  Google Scholar 

  • Vršnak, B., Temmer, M., Veronig, A.M.: 2007b, Coronal holes and solar wind high-speed streams: II. Forecasting the geomagnetic effects. Solar Phys. 240, 331. DOI .

    Article  ADS  Google Scholar 

  • Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J.C., Nitta, N.V., Poomvises, W., Thompson, B.J., Wu, C.-C., Yashiro, S., Zhukov, A.N.: 2007, Solar and interplanetary sources of major geomagnetic storms (\(\mathrm{Dst} <= -100~\mbox{nT}\)) during 1996 – 2005. J. Geophys. Res. 112(A11), A10102. DOI . ADS .

    ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by Croatian Science Foundation under the project 6212 “Solar and Stellar Variability”. M.D. and J.C. acknowledge the support by the ESF project PoKRet. The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bojan Vršnak.

Additional information

Earth-affecting Solar Transients

Guest Editors: Jie Zhang, Xochitl Blanco-Cano, Nariaki Nitta, and Nandita Srivastava

Appendices

Appendix A: CIR–HSS List

In Table 2 a list of the CIR–HSS structures identified in the two analysed periods is presented. The event label is defined in the first column, which is followed by the date and time of the CIR onset at the three-hour time resolution data. In the third and fourth column the beginning and the end of the CIR–HSS structure are displayed in the form of DOY, whereas the fifth column gives the corresponding duration of the structure, expressed in days. The question mark denotes that a given CIR–HSS was interrupted by ICME(s). In the last four columns the peak values (based on the three-hour resolution) of geomagnetic activity parameters are displayed.

Table 2 CIRs–HSSs in the analysed periods.

Appendix B: The Effect of Time Resolution

To demonstrate how the applied time resolution affects the correlation results, we illustrate the dependence of linear least-squares fit parameters on the time resolution. In particular, the time resolutions of 1 h, 3 h, 6 h, and 12 h are applied to the relationships \(\mathrm{Dst}(V)\), \(\mathrm{AE}(V)\), \(\mathrm{Dst}(\mathit{VB}_{s})\), and \(\mathrm{AE}(\mathit{VB}_{s})\). The dependence of the correlation coefficients, cc, are summarised in Figure 7 and Table 3. Note that a similar analysis of the time-resolution effects, including the Ap index, was performed by Verbanac et al. (2013).

Figure 7
figure 7

Effect of the applied time resolution on the correlation coefficients for the relationships (a\(\mathrm{Dst}(V)\) and \(\mathrm{AE}(V)\) and (b\(\mathrm{Dst}(\mathit{VB}_{s})\) and \(\mathrm{AE}(\mathit{VB}_{s})\).

Table 3 Dependence of the correlation coefficients for \(\mathrm{Dst}(V)\), \(\mathrm{AE}(V)\), \(\mathrm{Dst}(\mathit{VB}_{s})\), and \(\mathrm{AE}(\mathit{VB}_{s})\) on the applied time resolution.

In the case of the \(\mathrm{Dst}(V)\) and \(\mathrm{AE}(V)\) relationships, the differences between the linear least-squares fits performed on data based on different time resolutions are completely insignificant – the slopes and \(y\)-axis intercepts differ by less than 1% from those shown in Figures 2a and c, respectively. The only difference is in the range covered by the data, since both the geomagnetic data and \(V\) attain lower values at lower time resolutions. However, the main difference is in the significant increase of the correlation coefficients with decreasing time resolutions (Figure 7a), primarily due to the corresponding data smoothing. This is especially pronounced in the case of the \(\mathrm{AE}(V)\) relationship (red line in Figure 7a), since higher resolution AE data are very structured.

The situation is quite different for the relationships \(\mathrm{Dst}(\mathit{VB}_{s})\) and \(\mathrm{AE}(\mathit{VB}_{s})\). In addition to the change in the data range, here the slopes of the linear least-squares fits also change, systematically increasing with decreasing time resolutions. This is illustrated in Figure 8, where the 1 h time resolution correlations (red line) are compared with those for the 12 h resolution (black line). This is basically caused by lower values of \(\mathit{VB}_{s}\), being smoothed at lower resolutions. The change in correlation coefficients (Figure 7b) is not so well defined as in the case of the \(\mathrm{Dst}(V)\) and \(\mathrm{AE}(V)\) relationships displayed in Figure 7a.

Figure 8
figure 8

Comparison of correlations at a time resolution of 1 h (red pluses and red line) and 12 h (black crosses and black line), shown for (a\(\mathrm{Dst}(\mathit{VB}_{s})\) and (b\(\mathrm{AE}(\mathit{VB}_{s})\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vršnak, B., Dumbović, M., Čalogović, J. et al. Geomagnetic Effects of Corotating Interaction Regions. Sol Phys 292, 140 (2017). https://doi.org/10.1007/s11207-017-1165-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-017-1165-5

Keywords

Navigation