Skip to main content
Log in

Interfacing MHD Single Fluid and Kinetic Exospheric Solar Wind Models and Comparing Their Energetics

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

An exospheric kinetic solar wind model is interfaced with an observation-driven single-fluid magnetohydrodynamic (MHD) model. Initially, a photospheric magnetogram serves as observational input in the fluid approach to extrapolate the heliospheric magnetic field. Then semi-empirical coronal models are used for estimating the plasma characteristics up to a heliocentric distance of 0.1 AU. From there on, a full MHD model that computes the three-dimensional time-dependent evolution of the solar wind macroscopic variables up to the orbit of Earth is used. After interfacing the density and velocity at the inner MHD boundary, we compare our results with those of a kinetic exospheric solar wind model based on the assumption of Maxwell and Kappa velocity distribution functions for protons and electrons, respectively, as well as with in situ observations at 1 AU. This provides insight into more physically detailed processes, such as coronal heating and solar wind acceleration, which naturally arise from including suprathermal electrons in the model. We are interested in the profile of the solar wind speed and density at 1 AU, in characterizing the slow and fast source regions of the wind, and in comparing MHD with exospheric models in similar conditions. We calculate the energetics of both models from low to high heliocentric distances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Notes

  1. NASA spacecraft at the L1 Lagrangian point of the Earth designed for long-term solar wind measurements and its effects on the terrestrial magnetosphere ( https://wind.nasa.gov ).

  2. Multi-source data set for the near Earth solar wind of combined and normalized observational data from ACE (Advanced Composition Explorer), Wind, IMP 8 (Interplanetary Monitoring Platform) and GOES (Geostationary Operational Environmental Satellite) satellite missions.

  3. A 1D version of the kinetic exospheric model developed by the group in IASB-BIRA and collaborators can be found in CCMC ( http://ccmc.gsfc.nasa.gov/models/exo.php ), and it can run online for user-defined setups.

  4. More information can be found at http://sidc.oma.be/cactus/ .

  5. As shown in Figure 7, there are two different proton temperatures estimated that in general bracket the real temperature at 1 AU. We denote the integral in the 3D velocity space of the distribution over all measured angles and energy bandwidths as \(T\)-large. The \(T\)-small is calculated by the sum over all angles for a determined energy, then summing the moments of the estimated spectrum of the plasma and by taking the radial component of the temperature tensor ( http://www.cosmos.esa.int/web/ulysses/swoops-ions-user-notes ).

References

  • Arge, C.N., Pizzo, V.J.: 2000, Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J. Geophys. Res. 105, 10465. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cranmer, S.R.: 2012, Self-consistent models of the solar wind. Space Sci. Rev. 172, 145. DOI . ADS .

    Article  ADS  Google Scholar 

  • Goldstein, H., Poole, C.P., Safko, J.L.: 2002, Classical Mechanics. ADS .

    MATH  Google Scholar 

  • Gressl, C., Veronig, A.M., Temmer, M., Odstrčil, D., Linker, J.A., Mikić, Z., Riley, P.: 2014, Comparative study of MHD modeling of the background solar wind. Solar Phys. 289, 1783. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hellinger, P., Trávníček, P.M., Štverák, Š., Matteini, L., Velli, M.: 2013, Proton thermal energetics in the solar wind: Helios reloaded. J. Geophys. Res. 118, 1351. DOI . ADS .

    Article  Google Scholar 

  • Hundhausen, A.J.: 1968, Direct observations of solar-wind particles. Space Sci. Rev. 8, 690. DOI . ADS .

    Article  ADS  Google Scholar 

  • Jockers, K.: 1970, Solar wind models based on exospheric theory. Astron. Astrophys. 6, 219. ADS .

    ADS  Google Scholar 

  • Lamy, H., Pierrard, V., Maksimovic, M., Lemaire, J.F.: 2003, A kinetic exospheric model of the solar wind with a nonmonotonic potential energy for the protons. J. Geophys. Res. 108, 1047. DOI . ADS .

    Article  Google Scholar 

  • Lemaire, J., Pierrard, V.: 2001, Kinetic models of solar and polar winds. Astrophys. Space Sci. 277, 169. DOI . ADS .

    Article  ADS  MATH  Google Scholar 

  • Lemaire, J., Scherer, M.: 1971, Simple model for an ion-exosphere in an open magnetic field. Phys. Fluids 14, 1683. DOI . ADS .

    Article  ADS  Google Scholar 

  • Maksimovic, M., Pierrard, V., Lemaire, J.F.: 1997, A kinetic model of the solar wind with Kappa distribution functions in the corona. Astron. Astrophys. 324, 725. ADS .

    ADS  Google Scholar 

  • Maksimovic, M., Zouganelis, I., Chaufray, J.-Y., Issautier, K., Scime, E.E., Littleton, J.E., Marsch, E., McComas, D.J., Salem, C., Lin, R.P., Elliott, H.: 2005, Radial evolution of the electron distribution functions in the fast solar wind between 0.3 and 1.5 AU. J. Geophys. Res. 110, A09104. DOI . ADS .

    Article  ADS  Google Scholar 

  • McGregor, S.L., Hughes, W.J., Arge, C.N., Owens, M.J., Odstrcil, D.: 2011, The distribution of solar wind speeds during solar minimum: Calibration for numerical solar wind modeling constraints on the source of the slow solar wind. J. Geophys. Res. 116, A03101. DOI . ADS .

    ADS  Google Scholar 

  • Odstrčil, D.: 2003, Modeling 3-D solar wind structure. Adv. Space Res. 32, 497. DOI . ADS .

    Article  ADS  Google Scholar 

  • Odstrcil, D., Pizzo, V.J.: 1999, Distortion of the interplanetary magnetic field by three-dimensional propagation of coronal mass ejections in a structured solar wind. J. Geophys. Res. 104, 28225. DOI . ADS .

    Article  ADS  Google Scholar 

  • Odstrčil, D., Pizzo, V.J.: 1999a, Three-dimensional propagation of CMEs in a structured solar wind flow: 1. CME launched within the streamer belt. J. Geophys. Res. 104, 483. DOI . ADS .

    Article  ADS  Google Scholar 

  • Odstrčil, D., Pizzo, V.J.: 1999b, Three-dimensional propagation of coronal mass ejections in a structured solar wind flow 2. CME launched adjacent to the streamer belt. J. Geophys. Res. 104, 493. DOI . ADS .

    Article  ADS  Google Scholar 

  • Parker, E.N.: 2010, Kinetic and hydrodynamic representations of coronal expansion and the solar wind. AIP Conf. Proc. 1216, 3. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pierrard, V.: 2012, Kinetic models of solar wind electrons, protons and heavy ions. In: Exploring the Solar Wind, 221. DOI .

    Google Scholar 

  • Pierrard, V., Lazar, M., Schlickeiser, R.: 2011, Evolution of the electron distribution function in the whistler wave turbulence of the solar wind. Solar Phys. 269, 421. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pierrard, V., Lemaire, J.: 1996, Lorentzian ion exosphere model. J. Geophys. Res. 101, 7923. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pierrard, V., Pieters, M.: 2014, Coronal heating and solar wind acceleration for electrons, protons, and minor ions obtained from kinetic models based on kappa distributions. J. Geophys. Res. 119, 9441. DOI . ADS .

    Article  Google Scholar 

  • Pierrard, V., Issautier, K., Meyer-Vernet, N., Lemaire, J.: 2001, Collisionless model of the solar wind in a spiral magnetic field. Geophys. Res. Lett. 28, 223. DOI . ADS .

    Article  ADS  MATH  Google Scholar 

  • Pierrard, V., Borremans, K., Stegen, K., Lemaire, J.F.: 2014, Coronal temperature profiles obtained from kinetic models and from coronal brightness measurements obtained during solar eclipses. Solar Phys. 289, 183. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pierrard, V., Lazar, M., Poedts, S., Štverák, Š., Maksimovic, M., Trávníček, P.M.: 2016, The electron temperature and anisotropy in the solar wind. Comparison of the core and halo populations. Solar Phys. 291, 2165. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pomoell, J., Poedts, S.: 2017, Euhforia heliospheric modeling. J. Space Weather Space Clim., submitted.

  • Pomoell, J., Vainio, R.: 2012, Influence of solar wind heating formulations on the properties of shocks in the corona. Astrophys. J. 745, 151. DOI . ADS .

    Article  ADS  Google Scholar 

  • Scudder, J.D., Karimabadi, H.: 2013, Ubiquitous non-thermals in astrophysical plasmas: restating the difficulty of maintaining Maxwellians. Astrophys. J. 770, 26. DOI . ADS .

    Article  ADS  Google Scholar 

  • Spitzer, L.: 1962, Physics of Fully Ionized Gases. ADS .

    MATH  Google Scholar 

  • Štverák, Š., Trávníček, P.M., Hellinger, P.: 2015, Electron energetics in the expanding solar wind via Helios observations. J. Geophys. Res. 120(10), 8177. DOI .

    Article  Google Scholar 

  • Voitenko, Y., Pierrard, V.: 2015, Generation of proton beams by non-uniform solar wind turbulence. Solar Phys. 290, 1231. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R. Jr.: 1990, Solar wind speed and coronal flux-tube expansion. Astrophys. J. 355, 726. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R. Jr., Phillips, J.L., Goldstein, B.E.: 1997, Solar wind stream interactions and the wind speed-expansion factor relationship. Astrophys. J. Lett. 488, L51. DOI . ADS .

    Article  ADS  Google Scholar 

  • Withbroe, G.L.: 1988, The temperature structure, mass, and energy flow in the corona and inner solar wind. Astrophys. J. 325, 442. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zouganelis, I., Meyer-Vernet, N., Landi, S., Maksimovic, M., Pantellini, F.: 2005, Acceleration of weakly collisional solar-type winds. Astrophys. J. Lett. 626, L117. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

SPM acknowledges financial support by the FWO and NASA Living with a Star grant number NNX16AC11G. This research was supported by projects GOA/2015-014 (KU Leuven, 2014 – 2018), and the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office (IAP P7/08 CHARM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofia-Paraskevi Moschou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moschou, SP., Pierrard, V., Keppens, R. et al. Interfacing MHD Single Fluid and Kinetic Exospheric Solar Wind Models and Comparing Their Energetics. Sol Phys 292, 139 (2017). https://doi.org/10.1007/s11207-017-1164-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-017-1164-6

Keywords

Navigation