Skip to main content
Log in

Influence of Non-Potential Coronal Magnetic Topology on Solar-Wind Models

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

By comparing a magneto-frictional model of the low-coronal magnetic-field to a potential-field source-surface model, we investigate the possible impact of non-potential magnetic structure on empirical solar-wind models. These empirical models (such as Wang–Sheeley–Arge) estimate the distribution of solar-wind speed solely from the magnetic-field structure in the low corona. Our models are computed in a domain between the solar surface and 2.5 solar radii, and they are extended to 0.1 AU using a Schatten current-sheet model. The non-potential field has a more complex magnetic skeleton and quasi-separatrix structures than the potential field, leading to different sub-structure in the solar-wind speed proxies. It contains twisted magnetic structures that can perturb the separatrix surfaces traced down from the base of the heliospheric current sheet. A significant difference between the models is the greater amount of open magnetic flux in the non-potential model. Using existing empirical formulae this leads to higher predicted wind speeds for two reasons: partly because magnetic-flux tubes expand less rapidly with height, but more importantly because more open-field lines are further from coronal-hole boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  • Altschuler, M.D., Newkirk, G.: 1969, Magnetic fields and the structure of the solar corona. I: Methods of calculating coronal fields. Solar Phys. 9, 131. DOI . ADS .

    Article  ADS  Google Scholar 

  • Antiochos, S.K., Mikić, Z., Titov, V.S., Lionello, R., Linker, J.A.: 2011, A model for the sources of the slow solar wind. Astrophys. J. 731, 112. DOI . ADS .

    Article  ADS  Google Scholar 

  • Arge, C.N., Pizzo, V.J.: 2000, Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J. Geophys. Res. 105, 10465. DOI . ADS .

    Article  ADS  Google Scholar 

  • Arge, C.N., Odstrcil, D., Pizzo, V.J., Mayer, L.R.: 2003, Improved method for specifying solar wind speed near the Sun. In: Velli, M., Bruno, R., Malara, F., Bucci, B. (eds.) Solar Wind Ten CS-679, Amer. Inst. Phys., 190. DOI . ADS .

  • Arge, C.N., Luhmann, J.G., Odstrcil, D., Schrijver, C.J., Li, Y.: 2004, Stream structure and coronal sources of the solar wind during the May 12th, 1997 CME. J. Atmos. Solar-Terr. Phys. 66, 1295. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cook, G.R., Mackay, D.H., Nandy, D.: 2009, Solar cycle variations of coronal null points: implications for the magnetic breakout model of coronal mass ejections. Astrophys. J. 704, 1021. DOI . ADS .

    Article  ADS  Google Scholar 

  • Craig, I.J.D., Sneyd, A.D.: 1986, A dynamic relaxation technique for determining the structure and stability of coronal magnetic fields. Astrophys. J. 311, 451. DOI . ADS .

    Article  ADS  Google Scholar 

  • Crooker, N.U., McPherron, R.L., Owens, M.J.: 2014, Comparison of interplanetary signatures of streamers and pseudostreamers. J. Geophys. Res. 119, 4157. DOI . ADS .

    Article  Google Scholar 

  • Crooker, N.U., Antiochos, S.K., Zhao, X., Neugebauer, M.: 2012, Global network of slow solar wind. J. Geophys. Res. 117, 4104. DOI . ADS .

    Google Scholar 

  • Edwards, S.J., Parnell, C.E.: 2015, Null point distribution in global coronal potential field extrapolations. Solar Phys. 290, 2055. DOI . ADS .

    Article  ADS  Google Scholar 

  • Edwards, S.J., Parnell, C.E., Harra, L.K., Culhane, J.L., Brooks, D.H.: 2015, A comparison of global magnetic field skeletons and active region upflows. Solar Phys. (in press).

  • Freed, M.S., Longcope, D.W., McKenzie, D.E.: 2015, Three-year global survey of coronal null points from Potential-Field-Source-Surface (PFSS) modeling and Solar Dynamics Observatory (SDO) observations. Solar Phys. 290, 467. DOI . ADS .

    Article  ADS  Google Scholar 

  • Haynes, A.L., Parnell, C.E.: 2007, A trilinear method for finding null points in a three-dimensional vector space. Phys. Plasmas 14(8), 082107. DOI . ADS .

    Article  ADS  Google Scholar 

  • Haynes, A.L., Parnell, C.E.: 2010, A method for finding three-dimensional magnetic skeletons. Phys. Plasmas 17(9), 092903. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hudson, H.S., Svalgaard, L., Hannah, I.G.: 2014, Solar sector structure. Space Sci. Rev. 186, 17. DOI . ADS .

    Article  ADS  Google Scholar 

  • Longcope, D.W.: 2005, Topological methods for the analysis of solar magnetic fields. Living Rev. Solar Phys. 2, 7. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mackay, D., Yeates, A.: 2012, The Sun’s global photospheric and coronal magnetic fields: observations and models. Living Rev. Solar Phys. 9, 6. DOI . ADS .

    Article  ADS  Google Scholar 

  • Odstrcil, D.: 2003, Modeling 3-D solar wind structure. Adv. Space Res. 32, 497. DOI . ADS .

    Article  ADS  Google Scholar 

  • Parnell, C.E., Maclean, R.C., Haynes, A.L.: 2010, The detection of numerous magnetic separators in a three-dimensional magnetohydrodynamic model of solar emerging flux. Astrophys. J. Lett. 725, L214. DOI . ADS .

    Article  ADS  Google Scholar 

  • Parnell, C.E., Smith, J.M., Neukirch, T., Priest, E.R.: 1996, The structure of three-dimensional magnetic neutral points. Phys. Plasmas 3, 759. DOI . ADS .

    Article  ADS  Google Scholar 

  • Platten, S.J., Parnell, C.E., Haynes, A.L., Priest, E.R., Mackay, D.H.: 2014, The solar cycle variation of topological structures in the global solar corona. Astron. Astrophys. 565, A44. DOI . ADS .

    Article  ADS  Google Scholar 

  • Poduval, B., Zhao, X.P.: 2014, Validating solar wind prediction using the current sheet source surface model. Astrophys. J. Lett. 782, L22. DOI . ADS .

    Article  ADS  Google Scholar 

  • Priest, E.R., Titov, V.S.: 1996, Magnetic reconnection at three-dimensional null points. Proc. Roy. Soc. London Ser. A, Math. Phys. Sci. 354, 2951. ADS .

    MathSciNet  ADS  MATH  Google Scholar 

  • Rachmeler, L.A., Platten, S.J., Bethge, C., Seaton, D.B., Yeates, A.R.: 2014, Observations of a hybrid double-streamer/pseudostreamer in the solar corona. Astrophys. J. Lett. 787, L3. DOI . ADS .

    Article  ADS  Google Scholar 

  • Riley, P., Linker, J.A., Arge, C.N.: 2015, On the role played by magnetic expansion factor in the prediction of solar wind speed. Space Weather 13, 154. DOI . ADS .

    Article  ADS  Google Scholar 

  • Riley, P., Linker, J.A., Mikić, Z.: 2001, An empirically-driven global MHD model of the solar corona and inner heliosphere. J. Geophys. Res. 106, 15889. DOI . ADS .

    Article  ADS  Google Scholar 

  • Riley, P., Linker, J.A., Mikić, Z., Lionello, R., Ledvina, S.A., Luhmann, J.G.: 2006, A comparison between global solar magnetohydrodynamic and potential field source surface model results. Astrophys. J. 653, 1510. DOI . ADS .

    Article  ADS  Google Scholar 

  • Riley, P., Lionello, R., Linker, J.A., Mikic, Z., Luhmann, J., Wijaya, J.: 2011, Global MHD modeling of the solar corona and inner heliosphere for the whole heliosphere interval. Solar Phys. 274, 361. DOI . ADS .

    Article  ADS  Google Scholar 

  • Riley, P., Ben-Nun, M., Linker, J.A., Mikic, Z., Svalgaard, L., Harvey, J., Bertello, L., Hoeksema, T., Liu, Y., Ulrich, R.: 2014, A multi-observatory inter-comparison of line-of-sight synoptic solar magnetograms. Solar Phys. 289, 769. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schatten, K.H.: 1971, Current sheet magnetic model for the solar corona. Cosm. Electrodyn. 2, 232. ADS .

    ADS  Google Scholar 

  • Schatten, K.H., Wilcox, J.M., Ness, N.F.: 1969, A model of interplanetary and coronal magnetic fields. Solar Phys. 6, 442. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sheeley, N.R. Jr.: 2005, Surface evolution of the Sun’s magnetic field: a historical review of the flux-transport mechanism. Living Rev. Solar Phys. 2, 5. DOI . ADS .

    Article  ADS  Google Scholar 

  • Smith, E.J., Balogh, A., Forsyth, R.J., McComas, D.J.: 2001, Ulysses in the South polar cap at solar maximum: heliospheric magnetic field. Geophys. Res. Lett. 28, 4159. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tadesse, T., Pevtsov, A.A., Wiegelmann, T., MacNeice, P.J., Gosain, S.: 2014, Global solar free magnetic energy and electric current density distribution of Carrington rotation 2124. Solar Phys. 289, 4031. DOI . ADS .

    Article  ADS  Google Scholar 

  • Titov, V.S.: 2007, Generalized squashing factors for covariant description of magnetic connectivity in the solar corona. Astrophys. J. 660, 863. DOI . ADS .

    Article  ADS  Google Scholar 

  • Titov, V.S., Hornig, G., Démoulin, P.: 2002, Theory of magnetic connectivity in the solar corona. J. Geophys. Res. 107, 1164. DOI . ADS .

    Article  Google Scholar 

  • Titov, V.S., Mikić, Z., Linker, J.A., Lionello, R., Antiochos, S.K.: 2011, Magnetic topology of coronal hole linkages. Astrophys. J. 731, 111. DOI . ADS .

    Article  ADS  Google Scholar 

  • van Ballegooijen, A.A., Cranmer, S.R.: 2008, Hyperdiffusion as a mechanism for solar coronal heating. Astrophys. J. 682, 644. DOI . ADS .

    Article  ADS  Google Scholar 

  • van Ballegooijen, A.A., Priest, E.R., Mackay, D.H.: 2000, Mean field model for the formation of filament channels on the Sun. Astrophys. J. 539, 983. DOI . ADS .

    Article  ADS  Google Scholar 

  • van Driel-Gesztelyi, L., Culhane, J.L., Baker, D., Démoulin, P., Mandrini, C.H., DeRosa, M.L., Rouillard, A.P., Opitz, A., Stenborg, G., Vourlidas, A., Brooks, D.H.: 2012, Magnetic topology of active regions and coronal holes: implications for coronal outflows and the solar wind. Solar Phys. 281, 237. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, Y.-M.: 2009, Coronal holes and open magnetic flux. Space Sci. Rev. 144, 383. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R. Jr.: 1990, Solar wind speed and coronal flux-tube expansion. Astrophys. J. 355, 726. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Young, P.R., Muglach, K.: 2014, Evidence for two separate heliospheric current sheets of cylindrical shape during mid-2012. Astrophys. J. 780, 103. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yang, W.H., Sturrock, P.A., Antiochos, S.K.: 1986, Force-free magnetic fields – the magneto-frictional method. Astrophys. J. 309, 383. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yeates, A.R.: 2014, Coronal magnetic field evolution from 1996 to 2012: continuous non-potential simulations. Solar Phys. 289, 631. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yeates, A.R., Mackay, D.H.: 2012, Chirality of high-latitude filaments over solar cycle 23. Astrophys. J. Lett. 753, L34. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yeates, A.R., Mackay, D.H., van Ballegooijen, A.A.: 2008, Evolution and distribution of current helicity in full-Sun simulations. Astrophys. J. Lett. 680, L165. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yeates, A.R., Mackay, D.H., van Ballegooijen, A.A., Constable, J.A.: 2010, A nonpotential model for the Sun’s open magnetic flux. J. Geophys. Res. 115, 9112. DOI . ADS .

    Article  Google Scholar 

  • Zhao, X., Hoeksema, J.T.: 1995, Predicting the heliospheric magnetic field using the current sheet-source surface model. Adv. Space Res. 16, 181. DOI . ADS .

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

A.R. Yeates and S.J. Edwards were supported by STFC through consortium grant ST/K001043/1 and the Durham University Impact Acceleration Account, as well as by the US Air Force Office for Scientific Research. D.H. Mackay would like to thank the Leverhulme Trust and STFC for financial support. The authors thank Andrew L. Haynes for the use of his separatrix surface and null-point finding codes. Numerical simulations used the SRIF and STFC funded HPC cluster at the University of St Andrews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Yeates.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic Supplementary Material

Below are the links to the electronic supplementary material.

(MP4 12.1 MB)

(MP4 11.6 MB)

(MP4 10.8 MB)

(MP4 9.9 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edwards, S.J., Yeates, A.R., Bocquet, FX. et al. Influence of Non-Potential Coronal Magnetic Topology on Solar-Wind Models. Sol Phys 290, 2791–2808 (2015). https://doi.org/10.1007/s11207-015-0795-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-015-0795-8

Keywords

Navigation