Skip to main content
Log in

Near-Sun Flux-Rope Structure of CMEs

  • Flux-Rope Structure of Coronal Mass Ejections
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We have used the Krall flux-rope model (Krall and St. Cyr, Astrophys. J. 2006, 657, 1740) (KFR) to fit 23 magnetic cloud (MC)-CMEs and 30 non-cloud ejecta (EJ)-CMEs in the Living With a Star (LWS) Coordinated Data Analysis Workshop (CDAW) 2011 list. The KFR-fit results shows that the CMEs associated with MCs (EJs) have been deflected closer to (away from) the solar disk center (DC), likely by both the intrinsic magnetic structures inside an active region (AR) and ambient magnetic structures (e.g. nearby ARs, coronal holes, and streamers, etc.). The mean absolute propagation latitudes and longitudes of the EJ-CMEs (18, 11) were larger than those of the MC-CMEs (11, 6) by 7 and 5, respectively. Furthermore, the KFR-fit widths showed that the MC-CMEs are wider than the EJ-CMEs. The mean fitting face-on width and edge-on width of the MC-CMEs (EJ-CMEs) were 87 (85) and 70 (63), respectively. The deflection away from DC and narrower angular widths of the EJ-CMEs have caused the observing spacecraft to pass over only their flanks and miss the central flux-rope structures. The results of this work support the idea that all CMEs have a flux-rope structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Burkepile, J.T., Hundhausen, A.J., Stanger, A.L., St. Cyr, O.C., Seiden, J.A.: 2004, Role of projection effects on solar coronal mass ejection properties: 1. A study of CMEs associated with limb activity. J. Geophys. Res. 109, 3103. doi: 10.1029/2003JA010149 .

    Article  Google Scholar 

  • Burkepile, J.T., St. Cyr, O.C.: 1993, A revised and expanded catalogue of mass ejections observed by the Solar Maximum Mission coronagraph. NASA STI/Recon Technical Report N 93, 26556.

  • Burlaga, L., Sittler, E., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock – Voyager, Helios, and IMP 8 observations. J. Geophys. Res. 86, 6673 – 6684. doi: 10.1029/JA086iA08p06673 .

    Article  ADS  Google Scholar 

  • Chen, J., Howard, R.A., Brueckner, G.E., Santoro, R., Krall, J., Paswaters, S.E., St. Cyr, O.C., Schwenn, R., Lamy, P., Simnett, G.M.: 1997, Evidence of an erupting magnetic flux rope: LASCO coronal mass ejection of 1997 April 13. Astrophys. J. Lett. 490, L191. doi: 10.1086/311029 .

    Article  ADS  Google Scholar 

  • Cremades, H., Bothmer, V.: 2004, On the three-dimensional configuration of coronal mass ejections. Astron. Astrophys. 422, 307 – 322. doi: 10.1051/0004-6361:20035776 .

    Article  ADS  Google Scholar 

  • Dere, K.P., Brueckner, G.E., Howard, R.A., Michels, D.J., Delaboudiniere, J.P.: 1999, LASCO and EIT observations of helical structure in coronal mass ejections. Astrophys. J. 516, 465 – 474. doi: 10.1086/307101 .

    Article  ADS  Google Scholar 

  • Gibson, S.E., Low, B.C.: 2000, Three-dimensional and twisted: an MHD interpretation of on-disk observational characteristics of coronal mass ejections. J. Geophys. Res. 105, 18187 – 18202. doi: 10.1029/1999JA000317 .

    Article  ADS  Google Scholar 

  • Gopalswamy, N.: 2006, Properties of interplanetary coronal mass ejections. Space Sci. Rev. 124, 145 – 168. doi: 10.1007/s11214-006-9102-1 .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Mäkelä, P., Xie, H., Akiyama, S., Yashiro, S.: 2009, CME interactions with coronal holes and their interplanetary consequences. J. Geophys. Res. 114, A00A22. doi: 10.1029/2008JA013686 .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Xie, H., Mäkelä, P., Akiyama, S., Yashiro, S., Kaiser, M.L., Howard, R.A., Bougeret, J.-L.: 2010, Interplanetary shocks lacking type II radio bursts. Astrophys. J. 710, 1111 – 1126. doi: 10.1088/0004-637X/710/2/1111 .

    Article  ADS  Google Scholar 

  • Gosling, J.T.: 1990, Coronal Mass Ejections and Magnetic Flux Ropes in Interplanetary Space. Geophys. Monogr. Ser. 58, AGU, Washington, 343 – 364.

    Google Scholar 

  • Illing, R.M.E., Hundhausen, A.J.: 1985, Observation of a coronal transient from 1.2 to 6 solar radii. J. Geophys. Res. 90, 275 – 282. doi: 10.1029/JA090iA01p00275 .

    Article  ADS  Google Scholar 

  • Kim, R.-S., Gopalswamy, N., Cho, K.-S., Moon, Y.-J., Yashiro, S.: 2012, Different characteristics of MC associated CME and EJ associated CME. Solar Phys., submitted (this issue).

  • Krall, J.: 2007, Are all coronal mass ejections hollow flux ropes? Astrophys. J. 657, 559 – 566. doi: 10.1086/510191 .

    Article  ADS  Google Scholar 

  • Krall, J., St. Cyr, O.C.: 2006, Flux-rope coronal mass ejection geometry and its relation to observed morphology. Astrophys. J. 652, 1740 – 1746. doi: 10.1086/508337 .

    Article  ADS  Google Scholar 

  • Krall, J., Chen, J., Duffin, R.T., Howard, R.A., Thompson, B.J.: 2001, Erupting solar magnetic flux ropes: theory and observation. Astrophys. J. 562, 1045 – 1057. doi: 10.1086/323844 .

    Article  ADS  Google Scholar 

  • Mohamed, A.A., Gopalswamy, N., Yashiro, S., Akiyama, S., Mäkelä, P., Xie, H., Jung, H.: 2012, The relation between coronal holes and coronal mass ejections during the rise, maximum, and declining phases of Solar Cycle 23. J. Geophys. Res. 117, 1103. doi: 10.1029/2011JA016589 .

    Article  Google Scholar 

  • St. Cyr, O.C., Plunkett, S.P., Michels, D.J., Paswaters, S.E., Koomen, M.J., Simnett, G.M., Thompson, B.J., Gurman, J.B., Schwenn, R., Webb, D.F., Hildner, E., Lamy, P.L.: 2000, Properties of coronal mass ejections: SOHO LASCO observations from January 1996 to June 1998. J. Geophys. Res. 105, 18169 – 18186. doi: 10.1029/1999JA000381 .

    Article  ADS  Google Scholar 

  • St. Cyr, O.C., Cremades, H., Bothmer, V., Krall, J., Burkepile, J.T.: 2004, Morphology Indicators of the three-dimensional size of flux rope CMEs: a prediction for STEREO. AGU Fall Meeting Abstracts, SH22A-04.

  • Thernisien, A.F.R., Howard, R.A., Vourlidas, A.: 2006, Modeling of flux rope coronal mass ejections. Astrophys. J. 652, 763 – 773. doi: 10.1086/508254 .

    Article  ADS  Google Scholar 

  • Xie, H., St. Cyr, O.C., Gopalswamy, N., Yashiro, S., Krall, J., Kramar, M., Davila, J.: 2009, On the origin, 3D structure and dynamic evolution of CMEs near solar minimum. Solar Phys. 259, 143 – 161. doi: 10.1007/s11207-009-9422-x .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work uses data from the NASA/LWS Coordinated Data Analysis Workshops on CME/flux-ropes in 2010 and 2011. We acknowledge the workshop support provided by NASA/LWS, Predictive Sciences, Inc. (San Diego, CA), University of Alcala (Alcala de Henares, Spain), and Ministerio de Ciencia e Innovacion (Reference number AYA2010-12439-E), Spain. The authors acknowledge support of NASA grant LWSTRT08-0029.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Xie.

Additional information

Flux-Rope Structure of Coronal Mass Ejections

Guest Editors: N. Gopalswamy, T. Nieves-Chinchilla, M. Hidalgo, J. Zhang, and P. Riley

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, H., Gopalswamy, N. & St. Cyr, O.C. Near-Sun Flux-Rope Structure of CMEs. Sol Phys 284, 47–58 (2013). https://doi.org/10.1007/s11207-012-0209-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-012-0209-0

Keywords

Navigation