Skip to main content

Advertisement

Log in

Quantifying the Difference Between the Flux-Tube Expansion Factor at the Source Surface and at the Alfvén Surface Using a Global MHD Model for the Solar Wind

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The potential-field approximation has been providing a fast and computationally inexpensive estimation for the solar corona’s global magnetic-field geometry for several decades. In contrast, more physics-based global magnetohydrodynamic (MHD) models have been used for a similar purpose, while being much more computationally expensive. Here, we investigate the difference in the field geometry between a global MHD model and the potential-field source-surface model (PFSSM) by tracing individual magnetic field lines in the MHD model from the Alfvén surface (AS), through the source surface (SS), all the way to the field-line footpoint, and then back to the source surface in the PFSSM. We also compare the flux-tube expansion at two points at the SS and the AS along the same radial line. We study the effect of solar cycle variations, the order of the potential-field harmonic expansion, and different magnetogram sources. We find that the flux-tube expansion factor is consistently smaller at the AS than at the SS for solar minimum and the fast solar wind, but it is consistently larger for solar maximum and the slow solar wind. We use the Wang–Sheeley–Arge model to calculate the associated wind speed for each field line and propagate these solar-wind speeds to 1 AU. We find a deviation of more than five hours in the arrival time between the two models for 20 % of the field lines in the solar minimum case and for 40 % of the field lines in the solar maximum case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Altschuler, M.D., Newkirk, G.: 1969, Magnetic fields and the structure of the solar corona. I: Methods of calculating coronal fields. Solar Phys. 9, 131. DOI . ADS .

    Article  ADS  Google Scholar 

  • Altschuler, M.D., Levine, R.H., Stix, M., Harvey, J.: 1977, High resolution mapping of the magnetic field of the solar corona. Solar Phys. 51, 345. ADS .

    Article  ADS  Google Scholar 

  • Arge, C.N., Pizzo, V.J.: 2000, Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J. Geophys. Res. 105, 10,465. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cohen, O., Sokolov, I.V., Roussev, I.I., Arge, C.N., Manchester, W.B., Gombosi, T.I., Frazin, R.A., Park, H., Butala, M.D., Kamalabadi, F., Velli, M.: 2007, A semiempirical magnetohydrodynamical model of the solar wind. Astrophys. J. Lett. 654, L163. DOI . ADS .

    Article  ADS  Google Scholar 

  • DeForest, C.E., Howard, T.A., McComas, D.J.: 2014, Inbound waves in the solar corona: a direct indicator of Alfvén surface location. Astrophys. J. 787, 124. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gilbert, J.A., Zurbuchen, T.H., Fisk, L.A.: 2007, A new technique for mapping open magnetic flux from the solar surface into the heliosphere. Astrophys. J. 663, 583. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hoeksema, J.T.: 1984, Structure and evolution of the large scale solar and heliospheric magnetic fields. Ph.D. thesis, Stanford Univ., CA. ADS .

  • Lee, C.O., Luhmann, J.G., Odstrcil, D., MacNeice, P.J., de Pater, I., Riley, P., Arge, C.N.: 2009, The solar wind at 1 AU during the declining phase of solar cycle 23: comparison of 3D numerical model results with observations. Solar Phys. 254, 155. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lee, C.O., Luhmann, J.G., Hoeksema, J.T., Sun, X., Arge, C.N., de Pater, I.: 2011, Coronal field opens at lower height during the solar cycles 22 and 23 minimum periods: IMF comparison suggests the source surface should be lowered. Solar Phys. 269, 367. DOI . ADS .

    Article  ADS  Google Scholar 

  • Levine, R.H., Schulz, M., Frazier, E.N.: 1982, Simulation of the magnetic structure of the inner heliosphere by means of a non-spherical source surface. Solar Phys. 77, 363. DOI . ADS .

    Article  ADS  Google Scholar 

  • Linker, J.A., Mikić, Z., Biesecker, D.A., Forsyth, R.J., Gibson, S.E., Lazarus, A.J., Lecinski, A., Riley, P., Szabo, A., Thompson, B.J.: 1999, Magnetohydrodynamic modeling of the solar corona during Whole Sun Month. J. Geophys. Res. 104, 9809. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lionello, R., Linker, J.A., Mikić, Z.: 2009, Multispectral emission of the sun during the first Whole Sun Month: magnetohydrodynamic simulations. Astrophys. J. 690, 902. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lionello, R., Mikic, Z., Schnack, D.D.: 1998, Magnetohydrodynamics of solar coronal plasmas in cylindrical geometry. J. Comput. Phys. 140, 172. DOI . ADS .

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Luhmann, J.G., Li, Y., Arge, C.N., Gazis, P.R., Ulrich, R.: 2002, Solar cycle changes in coronal holes and space weather cycles. J. Geophys. Res. 107, 1154. DOI . ADS .

    Article  Google Scholar 

  • McComas, D.J., Velli, M., Lewis, W.S., Acton, L.W., Balat-Pichelin, M., Bothmer, V., Dirling, R.B., Feldman, W.C., Gloeckler, G., Habbal, S.R., Hassler, D.M., Mann, I., Matthaeus, W.H., McNutt, R.L., Mewaldt, R.A., Murphy, N., Ofman, L., Sittler, E.C., Smith, C.W., Zurbuchen, T.H.: 2007, Understanding coronal heating and solar wind acceleration: case for in situ near-Sun measurements. Rev. Geophys. 45, 1004. DOI . ADS .

    ADS  Google Scholar 

  • McGregor, S.L., Hughes, W.J., Arge, C.N., Owens, M.J., Odstrcil, D.: 2011, The distribution of solar-wind speeds during solar minimum: Calibration for numerical solar wind modeling constraints on the source of the slow solar wind. J. Geophys. Res. 116, 3101. DOI . ADS .

    Google Scholar 

  • Mikic, Z., Linker, J.A.: 1994, Disruption of coronal magnetic field arcades. Astrophys. J. 430, 898. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mikić, Z., Linker, J.A., Schnack, D.D., Lionello, R., Tarditi, A.: 1999, Magnetohydrodynamic modeling of the global solar corona. Phys. Plasmas 6, 2217. DOI . ADS .

    Article  ADS  Google Scholar 

  • Odstrcil, D.: 2003, Modeling 3-D solar wind structure. Adv. Space Res. 32, 497. DOI . ADS .

    Article  ADS  Google Scholar 

  • Oran, R., van der Holst, B., Landi, E., Jin, M., Sokolov, I.V., Gombosi, T.I.: 2013, A global wave-driven magnetohydrodynamic solar model with a unified treatment of open and closed magnetic field topologies. Astrophys. J. 778, 176. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pneuman, G.W., Kopp, R.A.: 1971, Gas-magnetic field interactions in the solar corona. Solar Phys. 18, 258. DOI . ADS .

    Article  ADS  Google Scholar 

  • Poduval, B., Zhao, X.P.: 2014, Validating solar wind prediction using the current sheet source surface model. Astrophys. J. Lett. 782, L22. DOI . ADS .

    Article  ADS  Google Scholar 

  • Powell, K.G., Roe, P.L., Linde, T.J., Gombosi, T.I., de Zeeuw, D.L.: 1999, A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys. 154, 284. DOI . ADS .

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Riley, P., Linker, J.A., Mikić, Z., Lionello, R., Ledvina, S.A., Luhmann, J.G.: 2006, A comparison between global solar magnetohydrodynamic and potential field source surface model results. Astrophys. J. 653, 1510. DOI . ADS .

    Article  ADS  Google Scholar 

  • Riley, P., Lionello, R., Linker, J.A., Mikic, Z., Luhmann, J., Wijaya, J.: 2011, Global MHD modeling of the solar corona and inner heliosphere for the whole heliosphere interval. Solar Phys. 274, 361. DOI . ADS .

    Article  ADS  Google Scholar 

  • Rušin, V., Druckmüller, M., Aniol, P., Minarovjech, M., Saniga, M., Mikić, Z., Linker, J.A., Lionello, R., Riley, P., Titov, V.S.: 2010, Comparing eclipse observations of the 2008 August 1 solar corona with an MHD model prediction. Astron. Astrophys. 513, A45. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schulz, M.: 1997, Non-spherical source-surface model of the heliosphere: a scalar formulation. Ann. Geophys. 15, 1379. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schulz, M., Frazier, E.N., Boucher, D.J. Jr.: 1978, Coronal magnetic-field model with non-spherical source surface. Solar Phys. 60, 83. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sokolov, I.V., van der Holst, B., Oran, R., Downs, C., Roussev, I.I., Jin, M., Manchester, W.B. IV, Evans, R.M., Gombosi, T.I.: 2013, Magnetohydrodynamic waves and coronal heating: unifying empirical and MHD turbulence models. Astrophys. J. 764, 23. DOI . ADS .

    Article  ADS  Google Scholar 

  • Toth, G., Sokolov, I.V., Gombosi, T.I., Chesney, D.R., Clauer, C.R., De Zeeuw, D.L., Hansen, K.C., Kane, K.J., Manchester, W.B., Oehmke, R.C., Powell, K.G., Ridley, A.J., Roussev, I.I., Stout, Q.F., Volberg, O., Wolf, R.A., Sazykin, S., Chan, A., Yu, B., Kóta, J.: 2005, Space weather modeling framework: a new tool for the space science community. J. Geophys. Res. 110, 12,226. DOI . ADS .

    Article  Google Scholar 

  • Tóth, G., van der Holst, B., Sokolov, I.V., De Zeeuw, D.L., Gombosi, T.I., Fang, F., Manchester, W.B., Meng, X., Najib, D., Powell, K.G., Stout, Q.F., Glocer, A., Ma, Y.-J., Opher, M.: 2012, Adaptive numerical algorithms in space weather modeling. J. Comput. Phys. 231, 870. DOI . ADS .

    Article  MathSciNet  ADS  Google Scholar 

  • van der Holst, B., Sokolov, I.V., Meng, X., Jin, M., Manchester, W.B. IV, Tóth, G., Gombosi, T.I.: 2014, Alfvén Wave Solar Model (AWSoM): coronal heating. Astrophys. J. 782, 81. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R.: 1990, Solar-wind speed and coronal flux-tube expansion. Astrophys. J. 355, 726. ADS .

    Article  ADS  Google Scholar 

  • Wiegelmann, T., Sakurai, T.: 2012, Solar force-free magnetic fields. Living Rev. Solar Phys. 9, 5. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Simulation results were obtained using the Space Weather Modeling Framework, developed by the Center for Space Environment Modeling, at the University of Michigan with funding support from NASA ESS, NASA ESTO-CT, NSF KDI, and DoD MURI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Cohen.

Ethics declarations

Disclosure of Potential Conflicts of Interests

The author, Ofer Cohen, declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cohen, O. Quantifying the Difference Between the Flux-Tube Expansion Factor at the Source Surface and at the Alfvén Surface Using a Global MHD Model for the Solar Wind. Sol Phys 290, 2245–2263 (2015). https://doi.org/10.1007/s11207-015-0739-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-015-0739-3

Keywords

Navigation