Skip to main content
Log in

Effect of Electron Pressure on the Grad–Shafranov Reconstruction of Interplanetary Coronal Mass Ejections

  • Flux-Rope Structure of Coronal Mass Ejections
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We investigate the effect of electron pressure on the Grad–Shafranov (GS) reconstruction of Interplanetary Coronal Mass Ejection (ICME) structures. The GS method uses in situ magnetic field and plasma measurements to solve for a magnetohydrostatic quasi-equilibrium state of space plasmas. For some events, a magnetic flux-rope structure embedded within the ICME can be reconstructed. The electron temperature contributes directly to the calculation of the total plasma pressure, and in ICMEs its contribution often substantially exceeds that of proton temperature. We selected ICME events observed with the Wind spacecraft at 1 AU and applied the GS reconstruction method to each event for cases with and without electron temperature measurements. We sorted them according to the proton plasma β (the ratio of proton plasma pressure to magnetic pressure) and the electron-to-proton temperature ratio. We present case studies of three representative events, show the cross sections of GS reconstructed flux-rope structure, and discuss the electron pressure contribution to key quantities in the numerical reconstruction procedure. We summarize and compare the geometrical and physical parameters derived from the GS reconstruction results for cases with and without electron temperature contribution. We conclude that overall the electron pressure effect on the GS reconstruction results contributes to a 10 – 20 % discrepancy in some key physical quantities, such as the magnetic flux content of the ICME flux rope observed at 1 AU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Notes

  1. Download a copy of the software package and a user manual from ftp://ftp.iwf.oeaw.ac.at/pub/moestl/publicgscode/ , or send an email to the author.

References

  • Al-Haddad, N., Roussev, I.I., Möstl, C., Jacobs, C., Lugaz, N., Poedts, S., Farrugia, C.J.: 2011, On the internal structure of the magnetic field in magnetic clouds and interplanetary coronal mass ejections: writhe versus twist. Astrophys. J. Lett. 738, L18. doi: 10.1088/2041-8205/738/2/L18 .

    Article  ADS  Google Scholar 

  • Al-Haddad, N., Nieves-Chinchilla, T., Savani, N.P., Möstl, C., Marubashi, K., Hidalgo, M.A., Roussev, I.I., Poedts, S., Farrugia, C.J.: 2013, Magnetic field configuration models and reconstruction methods: a comparative study. Solar Phys., in this issue. doi: 10.1007/s11207-013-0244-5 .

  • Fainberg, J., Osherovich, V.A., Stone, R.G., MacDowall, R.J., Balogh, A.: 1996, Ulysses observations of electron and proton components in a magnetic cloud and related wave activity. In: Winterhalter, D., Gosling, J.T., Habbal, S.R., Kurth, W.S., Neugebauer, M. (eds.) American Institute of Physics Conference Series 382, 554 – 557. doi: 10.1063/1.51513 .

    Google Scholar 

  • Farrugia, C.J., Fitzenreiter, R.J., Burlaga, L.F., Erkaev, N.V., Osherovich, V.A., Biernat, H.K., Fazakerley, A.: 1994, Observations in the sheath region ahead of a magnetic cloud and in the dayside magnetosheath during magnetic cloud passage. Adv. Space Res. 14, 105 – 110. doi: 10.1016/0273-1177(94)90055-8 .

    Article  ADS  Google Scholar 

  • Farrugia, C.J., Berdichevsky, D.B., Möstl, C., Galvin, A.B., Leitner, M., Popecki, M.A., Simunac, K.D.C., Opitz, A., Lavraud, B., Ogilvie, K.W., Veronig, A.M., Temmer, M., Luhmann, J.G., Sauvaud, J.A.: 2011, Multiple, distant (40) in situ observations of a magnetic cloud and a corotating interaction region complex. J. Atmos. Solar-Terr. Phys. 73, 1254 – 1269. doi: 10.1016/j.jastp.2010.09.011 .

    Article  ADS  Google Scholar 

  • Hasegawa, H., Sonnerup, B., Dunlop, M., Balogh, A., Haaland, S., Klecker, B., Paschmann, G., Lavraud, B., Dandouras, I., Rème, H.: 2004, Reconstruction of two-dimensional magnetopause structures from Cluster observations: verification of method. Ann. Geophys. 22, 1251 – 1266. doi: 10.5194/angeo-22-1251-2004 .

    Article  ADS  Google Scholar 

  • Hasegawa, H., Sonnerup, B.U.Ö., Klecker, B., Paschmann, G., Dunlop, M.W., Rème, H.: 2005, Optimal reconstruction of magnetopause structures from Cluster data. Ann. Geophys. 23, 973 – 982. doi: 10.5194/angeo-23-973-2005 .

    Article  ADS  Google Scholar 

  • Hasegawa, H., Nakamura, R., Fujimoto, M., Sergeev, V.A., Lucek, E.A., Rème, H., Khotyaintsev, Y.: 2007, Reconstruction of a bipolar magnetic signature in an earthward jet in the tail: flux rope or 3D guide-field reconnection? J. Geophys. Res. 112, 11206. doi: 10.1029/2007JA012492 .

    Article  Google Scholar 

  • Hau, L.N., Sonnerup, B.U.Ö.: 1999, Two-dimensional coherent structures in the magnetopause: recovery of static equilibria from single-spacecraft data. J. Geophys. Res. 104, 6899 – 6918. doi: 10.1029/1999JA900002 .

    Article  ADS  Google Scholar 

  • Hu, Q., Dasgupta, B.: 2005, Calculation of magnetic helicity of cylindrical flux rope. Geophys. Res. Lett. 32, 12109. doi: 10.1029/2005GL023004 .

    Article  ADS  Google Scholar 

  • Hu, Q., Smith, C.W., Ness, N.F., Skoug, R.M.: 2003, Double flux-rope magnetic cloud in the solar wind at 1 AU. Geophys. Res. Lett. 30, 070000. doi: 10.1029/2002GL016653 .

    Google Scholar 

  • Hu, Q., Smith, C.W., Ness, N.F., Skoug, R.M.: 2004, Multiple flux rope magnetic ejecta in the solar wind. J. Geophys. Res. 109, 3102. doi: 10.1029/2003JA010101 .

    Article  Google Scholar 

  • Hu, Q., Sonnerup, B.U.Ö.: 2001, Reconstruction of magnetic flux ropes in the solar wind. Geophys. Res. Lett. 28, 467 – 470. doi: 10.1029/2000GL012232 .

    Article  ADS  Google Scholar 

  • Hu, Q., Sonnerup, B.U.Ö.: 2002, Reconstruction of magnetic clouds in the solar wind: orientations and configurations. J. Geophys. Res. 107, 1142. doi: 10.1029/2001JA000293 .

    Article  Google Scholar 

  • Isavnin, A., Kilpua, E.K.J., Koskinen, H.E.J.: 2011, Grad–Shafranov reconstruction of magnetic clouds: overview and improvements. Solar Phys. 273, 205 – 219. doi: 10.1007/s11207-011-9845-z .

    Article  ADS  Google Scholar 

  • Jian, L., Russell, C.T., Luhmann, J.G., Skoug, R.M.: 2006, Properties of interplanetary coronal mass ejections at one AU during 1995 – 2004. Solar Phys. 239, 393 – 436. doi: 10.1007/s11207-006-0133-2 .

    Article  ADS  Google Scholar 

  • Kahler, S.W., Haggerty, D.K., Richardson, I.G.: 2011, Magnetic field-line lengths in interplanetary coronal mass ejections inferred from energetic electron events. Astrophys. J. 736, 106. doi: 10.1088/0004-637X/736/2/106 .

    Article  ADS  Google Scholar 

  • Kazachenko, M.D., Canfield, R.C., Longcope, D.W., Qiu, J.: 2012, Predictions of energy and helicity in four major eruptive solar flares. Solar Phys. 277, 165 – 183. doi: 10.1007/s11207-011-9786-6 .

    Article  ADS  Google Scholar 

  • Kilpua, E.K.J., Liewer, P.C., Farrugia, C., Luhmann, J.G., Möstl, C., Li, Y., Liu, Y., Lynch, B.J., Russell, C.T., Vourlidas, A., Acuna, M.H., Galvin, A.B., Larson, D., Sauvaud, J.A.: 2009, Multispacecraft observations of magnetic clouds and their solar origins between 19 and 23 May 2007. Solar Phys. 254, 325 – 344. doi: 10.1007/s11207-008-9300-y .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Acũna, M.H., Burlaga, L.F., Farrell, W.M., Slavin, J.A., Schatten, K.H., Mariani, F., Ness, N.F., Neubauer, F.M., Whang, Y.C., Byrnes, J.B., Kennon, R.S., Panetta, P.V., Scheifele, J., Worley, E.M.: 1995, The wind magnetic field investigation. Space Sci. Rev. 71, 207 – 229. doi: 10.1007/BF00751330 .

    Article  ADS  Google Scholar 

  • Li, H.J., Feng, X.S., Zuo, P.B., Xie, Y.Q.: 2009, Inferring interplanetary flux rope orientation with the minimum residue method. J. Geophys. Res. 114, A03102. doi: 10.1029/2008JA013331 .

    Article  ADS  Google Scholar 

  • Liu, Y., Luhmann, J.G., Huttunen, K.E.J., Lin, R.P., Bale, S.D., Russell, C.T., Galvin, A.B.: 2008, Reconstruction of the 2007 May 22 magnetic cloud: how much can we trust the flux-rope geometry of CMEs? Astrophys. J. Lett. 677, L133 – L136. doi: 10.1086/587839 .

    Article  ADS  Google Scholar 

  • Liu, Y., Thernisien, A., Luhmann, J.G., Vourlidas, A., Davies, J.A., Lin, R.P., Bale, S.D.: 2010, Reconstructing coronal mass ejections with coordinated imaging and in situ observations: global structure, kinematics, and implications for space weather forecasting. Astrophys. J. 722, 1762 – 1777. doi: 10.1088/0004-637X/722/2/1762 .

    Article  ADS  Google Scholar 

  • Möstl, C., Miklenic, C., Farrugia, C.J., Temmer, M., Veronig, A., Galvin, A.B., Vršnak, B., Biernat, H.K.: 2008, Two-spacecraft reconstruction of a magnetic cloud and comparison to its solar source. Ann. Geophys. 26, 3139 – 3152. doi: 10.5194/angeo-26-3139-2008 .

    Article  ADS  Google Scholar 

  • Möstl, C., Farrugia, C.J., Biernat, H.K., Leitner, M., Kilpua, E.K.J., Galvin, A.B., Luhmann, J.G.: 2009a, Optimized Grad–Shafranov reconstruction of a magnetic cloud using STEREO-wind observations. Solar Phys. 256, 427 – 441. doi: 10.1007/s11207-009-9360-7 .

    Article  ADS  Google Scholar 

  • Möstl, C., Farrugia, C.J., Miklenic, C., Temmer, M., Galvin, A.B., Luhmann, J.G., Kilpua, E.K.J., Leitner, M., Nieves-Chinchilla, T., Veronig, A., Biernat, H.K.: 2009b, Multispacecraft recovery of a magnetic cloud and its origin from magnetic reconnection on the Sun. J. Geophys. Res. 114, A04102. doi: 10.1029/2008JA013657 .

    Article  ADS  Google Scholar 

  • Möstl, C., Farrugia, C.J., Temmer, M., Miklenic, C., Veronig, A.M., Galvin, A.B., Leitner, M., Biernat, H.K.: 2009c, Linking remote imagery of a coronal mass ejection to its in situ signatures at 1 AU. Astrophys. J. Lett. 705, L180 – L185. doi: 10.1088/0004-637X/705/2/L180 .

    Article  ADS  Google Scholar 

  • Nieves-Chinchilla, T., Viñas, A.F.: 2008, Solar wind electron distribution functions inside magnetic clouds. J. Geophys. Res. 113, 2105. doi: 10.1029/2007JA012703 .

    Article  Google Scholar 

  • Ogilvie, K.W., Chornay, D.J., Fritzenreiter, R.J., Hunsaker, F., Keller, J., Lobell, J., Miller, G., Scudder, J.D., Sittler, E.C. Jr., Torbert, R.B., Bodet, D., Needell, G., Lazarus, A.J., Steinberg, J.T., Tappan, J.H., Mavretic, A., Gergin, E.: 1995, SWE, a comprehensive plasma instrument for the wind spacecraft. Space Sci. Rev. 71, 55 – 77. doi: 10.1007/BF00751326 .

    Article  ADS  Google Scholar 

  • Osherovich, V.A., Farrugia, C.J., Burlaga, L.F.: 1993, Dynamics of aging magnetic clouds. Adv. Space Res. 13, 57 – 62. doi: 10.1016/0273-1177(93)90391-N .

    Article  ADS  Google Scholar 

  • Osherovich, V.A., Farrugia, C.J., Burlaga, L.F., Lepping, R.P., Fainberg, J., Stone, R.G.: 1993, Polytropic relationship in interplanetary magnetic clouds. J. Geophys. Res. 98, 15331. doi: 10.1029/93JA01012 .

    Article  ADS  Google Scholar 

  • Qiu, J.: 2009, Observational analysis of magnetic reconnection sequence. Astrophys. J. 692, 1110 – 1124. doi: 10.1088/0004-637X/692/2/1110 .

    Article  ADS  Google Scholar 

  • Qiu, J., Hu, Q., Howard, T.A., Yurchyshyn, V.B.: 2007, On the magnetic flux budget in low-corona magnetic reconnection and interplanetary coronal mass ejections. Astrophys. J. 659, 758 – 772. doi: 10.1086/512060 .

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996 – 2009): catalog and summary of properties. Solar Phys. 264, 189 – 237. doi: 10.1007/s11207-010-9568-6 .

    Article  ADS  Google Scholar 

  • Richardson, I.G., Farrugia, C.J., Cane, H.V.: 1997, A statistical study of the behavior of the electron temperature in ejecta. J. Geophys. Res. 102, 4691 – 4700. doi: 10.1029/96JA04001 .

    Article  ADS  Google Scholar 

  • Riley, P., Linker, J.A., Lionello, R., Mikić, Z., Odstrcil, D., Hidalgo, M.A., Cid, C., Hu, Q., Lepping, R.P., Lynch, B.J., Rees, A.: 2004, Fitting flux ropes to a global MHD solution: a comparison of techniques. J. Atmos. Solar-Terr. Phys. 66, 1321 – 1331. doi: 10.1016/j.jastp.2004.03.019 .

    Article  ADS  Google Scholar 

  • Sittler, E.C., Burlaga, L.F.: 1998, Electron temperatures within magnetic clouds between 2 and 4 AU: Voyager 2 observations. J. Geophys. Res. 103, 17447 – 17454. doi: 10.1029/98JA01289 .

    Article  ADS  Google Scholar 

  • Skoug, R.M., Feldman, W.C., Gosling, J.T., McComas, D.J., Reisenfeld, D.B., Smith, C.W., Lepping, R.P., Balogh, A.: 2000a, Radial variation of solar wind electrons inside a magnetic cloud observed at 1 and 5 AU. J. Geophys. Res. 105, 27269 – 27276. doi: 10.1029/2000JA000095 .

    Article  ADS  Google Scholar 

  • Skoug, R.M., Feldman, W.C., Gosling, J.T., McComas, D.J., Smith, C.W.: 2000b, Solar wind electron characteristics inside and outside coronal mass ejections. J. Geophys. Res. 105, 23069 – 23084. doi: 10.1029/2000JA000017 .

    Article  ADS  Google Scholar 

  • Sonnerup, B.U.Ö., Guo, M.: 1996, Magnetopause transects. Geophys. Res. Lett. 23, 3679 – 3682. doi: 10.1029/96GL03573 .

    Article  ADS  Google Scholar 

  • Sonnerup, B.U.Ö., Hasegawa, H., Paschmann, G.: 2004, Anatomy of a flux transfer event seen by Cluster. Geophys. Res. Lett. 31, L11803. doi: 10.1029/2004GL020134 .

    Article  ADS  Google Scholar 

  • Sonnerup, B.U.Ö., Hasegawa, H., Teh, W.L., Hau, L.N.: 2006, Grad–Shafranov reconstruction: an overview. J. Geophys. Res. 111, A09204. doi: 10.1029/2006JA011717 .

    Article  ADS  Google Scholar 

  • Webb, G.M., Hu, Q., Dasgupta, B., Zank, G.P.: 2010, Homotopy formulas for the magnetic vector potential and magnetic helicity: the Parker spiral interplanetary magnetic field and magnetic flux ropes. J. Geophys. Res. 115, 10112. doi: 10.1029/2010JA015513 .

    Article  Google Scholar 

  • Wood, B.E., Rouillard, A.P., Möstl, C., Battams, K., Savani, N.P., Marubashi, K., Howard, R.A., Socker, D.G.: 2012, Connecting coronal mass ejections and magnetic clouds: a case study using an event from 22 June 2009. Solar Phys. 281, 369 – 389. doi: 10.1007/s11207-012-0036-3 .

    ADS  Google Scholar 

Download references

Acknowledgements

HQ and CJF acknowledge NASA grant NNG06GD41G for partial support. Work at UNH was also supported by NASA Wind grant NNX10AQ29G and NSF grant AGS-1140211. HQ is also grateful for partial support from NASA grants NNX12AF97G and NNX12AH50G, and NSF SHINE AGS-1062050. CM acknowledges funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n263252 [COMESEP]. This research was supported by a Marie Curie International Outgoing Fellowship within the 7th European Community Framework Programme. We are grateful to NASA CDAWeb for the Wind spacecraft data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Hu.

Additional information

Flux-Rope Structure of Coronal Mass Ejections

Guest Editors: N. Gopalswamy, T. Nieves-Chinchilla, M. Hidalgo, J. Zhang, and P. Riley

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Q., Farrugia, C.J., Osherovich, V.A. et al. Effect of Electron Pressure on the Grad–Shafranov Reconstruction of Interplanetary Coronal Mass Ejections. Sol Phys 284, 275–291 (2013). https://doi.org/10.1007/s11207-013-0259-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-013-0259-y

Keywords

Navigation