Skip to main content
Log in

Predictions of Energy and Helicity in Four Major Eruptive Solar Flares

  • SOLAR FLARE MAGNETIC FIELDS AND PLASMAS
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

In order to better understand the solar genesis of interplanetary magnetic clouds (MCs), we model the magnetic and topological properties of four large eruptive solar flares and relate them to observations. We use the three-dimensional Minimum Current Corona model (Longcope, 1996, Solar Phys. 169, 91) and observations of pre-flare photospheric magnetic field and flare ribbons to derive values of reconnected magnetic flux, flare energy, flux rope helicity, and orientation of the flux-rope poloidal field. We compare model predictions of those quantities to flare and MC observations, and within the estimated uncertainties of the methods used find the following: The predicted model reconnection fluxes are equal to or lower than the reconnection fluxes inferred from the observed ribbon motions. Both observed and model reconnection fluxes match the MC poloidal fluxes. The predicted flux-rope helicities match the MC helicities. The predicted free energies lie between the observed energies and the estimated total flare luminosities. The direction of the leading edge of the MC’s poloidal field is aligned with the poloidal field of the flux rope in the AR rather than the global dipole field. These findings compel us to believe that magnetic clouds associated with these four solar flares are formed by low-corona magnetic reconnection during the eruption, rather than eruption of pre-existing structures in the corona or formation in the upper corona with participation of the global magnetic field. We also note that since all four flares occurred in active regions without significant pre-flare flux emergence and cancelation, the energy and helicity that we find are stored by shearing and rotating motions, which are sufficient to account for the observed radiative flare energy and MC helicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbett, W.P., Fisher, G.H.: 2003, A coupled model for the emergence of active region magnetic flux into the solar corona. Astrophys. J. Lett. 582, L475 – L485. doi: 10.1086/344613 .

    Article  ADS  Google Scholar 

  • Antiochos, S.K., Devore, C.R., Klimchuk, J.A.: 1999, A model for solar coronal mass ejections. Astrophys. J. Lett. 510, L485 – L493.

    Article  ADS  Google Scholar 

  • Aschwanden, M.J., Wuelser, J.P., Nitta, N.V.: 2009, Solar flares, coronal mass ejections, EUV, stereoscopy. Solar Phys. 256, 3 – 40.

    Article  ADS  Google Scholar 

  • Barnes, G., Longcope, D.W., Leka, K.D.: 2005, Implementing a magnetic charge topology model for solar active regions. Astrophys. J. 629, 561 – 571. doi: 10.1086/431175 .

    Article  ADS  Google Scholar 

  • Berger, M.A.: 1999, Magnetic helicity in space physics. In: Brown, M.R., Canfield, R.C., Pevtsov, A.A. (eds.) Magnetic Helicity in Space and Laboratory Plasmas, Geophysical Monograph 111, AGU Press, Washington, 1 – 9.

    Chapter  Google Scholar 

  • Berger, M.A., Field, G.B.: 1984, The topological properties of magnetic helicity. J. Fluid Mech. 147, 133 – 148. doi: 10.1017/S0022112084002019 .

    Article  MathSciNet  ADS  Google Scholar 

  • Beveridge, C., Longcope, D.W.: 2006, A hierarchical application of the minimum current corona. Astrophys. J. Lett. 636, L453 – L461.

    Article  ADS  Google Scholar 

  • Bothmer, V., Schwenn, R.: 1998, The structure and origin of magnetic clouds in the solar wind. Ann. Geophys. 16, 1 – 24.

    Article  ADS  Google Scholar 

  • Bradshaw, S.J., Cargill, P.J.: 2010, The cooling of coronal plasmas. III. Enthalpy transfer as a mechanism for energy loss. Astrophys. J. 717, 163 – 174. doi: 10.1088/0004-637X/717/1/163 .

    Article  ADS  Google Scholar 

  • Burlaga, L., Sittler, E., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock – voyager, Helios, and imp 8 observations. J. Geophys. Res. 86, 6673 – 6684.

    Article  ADS  Google Scholar 

  • Carmichael, H.: 1964, A process for flares. In: Hess, W.N. (ed.) AAS-NASA Symposium on the Physics of Solar Flares, NASA, Washington, 451.

    Google Scholar 

  • Chae, J.: 2001, Observational determination of the rate of magnetic helicity transport through the solar surface via the horizontal motion of field line footpoints. Astrophys. J. Lett. 560, L95 – L98. doi: 10.1086/324173 .

    Article  ADS  Google Scholar 

  • Chae, J.: 2007, Measurements of magnetic helicity injected through the solar photosphere. Adv. Space Res. 39, 1700 – 1705. doi: 10.1016/j.asr.2007.01.035 .

    Article  ADS  Google Scholar 

  • Chen, J.: 1989, Effects of toroidal forces in current loops embedded in a background plasma. Astrophys. J. Lett. 338, L453 – L470.

    Article  ADS  Google Scholar 

  • Crooker, N.U.: 2000, Solar and heliospheric geoeffective disturbances. J. Atmos. Solar-Terr. Phys. 62, 1071 – 1085.

    Article  ADS  Google Scholar 

  • Dasso, S., Mandrini, C.H., Démoulin, P., Farrugia, C.J.: 2003, Magnetic helicity analysis of an interplanetary twisted flux tube. J. Geophys. Res. 108, 3 – 1. doi: 10.1029/2003JA009942 .

    Google Scholar 

  • Dasso, S., Mandrini, C.H., Démoulin, P., Luoni, M.L.: 2006, A new model-independent method to compute magnetic helicity in magnetic clouds. Astron. Astrophys. 455, 349 – 359. doi: 10.1051/0004-6361:20064806 .

    Article  ADS  MATH  Google Scholar 

  • Démoulin, P.: 2008, A review of the quantitative links between CMEs and magnetic clouds. Ann. Geophys. 26, 3113 – 3125.

    Article  ADS  Google Scholar 

  • Démoulin, P., Pariat, E.: 2007, Computing magnetic energy and helicity fluxes from series of magnetograms. Mem. Soc. Astron. Italiana 78, 136.

    ADS  Google Scholar 

  • Démoulin, P., Mandrini, C.H., van Driel-Gesztelyi, L., Thompson, B.J., Plunkett, S., Kovári, Z., Aulanier, G., Young, A.: 2002, What is the source of the magnetic helicity shed by CMEs? The long-term helicity budget of AR 7978. Astron. Astrophys. 382, 650 – 665. doi: 10.1051/0004-6361:20011634 .

    Article  ADS  Google Scholar 

  • DeVore, C.R.: 2000, Magnetic helicity generation by solar differential rotation. Astrophys. J. Lett. 539, L944 – L953.

    Article  Google Scholar 

  • Fan, Y., Gibson, S.E.: 2004, Numerical simulations of three-dimensional coronal magnetic fields resulting from the emergence of twisted magnetic flux tubes. Astrophys. J. Lett. 609, L1123 – L1133. doi: 10.1086/421238 .

    Article  ADS  Google Scholar 

  • Fletcher, L., Hudson, H.: 2001, The magnetic structure and generation of EuV flare ribbons. Solar Phys. 204, 69 – 89.

    Article  ADS  Google Scholar 

  • Forbes, T.G., Priest, E.R.: 1995, Photospheric magnetic field evolution and eruptive flares. Astrophys. J. 446, 377. doi: 10.1086/175797 .

    Article  ADS  Google Scholar 

  • Gibson, S.E., Fan, Y.: 2008, Partially ejected flux ropes: implications for interplanetary coronal mass ejections. J. Geophys. Res. 113, 9103. doi: 10.1029/2008JA013151 .

    Article  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Kaiser, M.L., Howard, R.A., Bougeret, J.: 2001, Radio signatures of coronal mass ejection interaction: coronal mass ejection cannibalism? Astrophys. J. Lett. 548, L91 – L94. doi: 10.1086/318939 .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Akiyama, S., Yashiro, S., Mäkelä, P.: 2010, Coronal mass ejections from sunspot and non-sunspot regions. In: Hasan, S.S. and Rutten, R.J. (eds.) Magnetic Coupling Between the Interior and Atmosphere of the Sun, Astrophys. Space Science Proc., Springer, Berlin, 289 – 307. doi: 10.1007/978 .

    Chapter  Google Scholar 

  • Gosling, J.T.: 1990, Coronal mass ejections and magnetic flux ropes in interplanetary space. In: Russel, C.T., Priest, E.R., Lee, L.C. (eds.) Physics of Magnetic Flux Ropes, Geophys. Monographs 58, AGU, Washington, 343 – 364.

    Chapter  Google Scholar 

  • Green, L.M., López Fuentes, M.C., Mandrini, C.H., Démoulin, P., Van Driel-Gesztelyi, L., Culhane, J.L.: 2002, The magnetic helicity budget of a CME-prolific active region. Solar Phys. 208, 43 – 68.

    Article  ADS  Google Scholar 

  • Gulisano, A.M., Dasso, S., Mandrini, C.H., Démoulin, P.: 2005, Magnetic clouds: a statistical study of magnetic helicity. J. Atmos. Solar-Terr. Phys. 67, 1761 – 1766. doi: 10.1016/j.jastp.2005.02.026 .

    Article  ADS  Google Scholar 

  • Hirayama, T.: 1974, Theoretical model of flares and prominences. i: Evaporating flare model. Solar Phys. 34, 323 – 338.

    Article  ADS  Google Scholar 

  • Hu, Q., Sonnerup, B.U.Ö.: 2001, Reconstruction of magnetic flux ropes in the solar wind. Geophys. Res. Lett. 28, 467 – 470.

    Article  ADS  Google Scholar 

  • Jing, J., Lee, J., Liu, C., Gary, D.E., Wang, H.: 2007, Hard X-ray intensity distribution along Hα ribbons. Astrophys. J. Lett. 664, L127 – L130. doi: 10.1086/520812 .

    Article  ADS  Google Scholar 

  • Kazachenko, M.D., Canfield, R.C., Longcope, D.W., Qiu, J., Des Jardins, A., Nightingale, R.W.: 2009, Sunspot rotation, flare energetics, and flux rope helicity: the eruptive flare on 2005 May 13. Astrophys. J. 704, 1146 – 1158. doi: 10.1088/0004-637X/704/2/1146 .

    Article  ADS  Google Scholar 

  • Kazachenko, M.D., Canfield, R.C., Longcope, D.W., Qiu, J.: 2010, Sunspot rotation, flare energetics, and flux rope helicity: the Halloween flare on 2003 28 October. Astrophys. J. 722, 1539 – 1546. doi: 10.1088/0004-637X/722/2/1539 .

    Article  ADS  Google Scholar 

  • Kopp, R.A., Pneuman, G.W.: 1976, Magnetic reconnection in the corona and the loop prominence phenomenon. Solar Phys. 50, 85 – 98.

    Article  ADS  Google Scholar 

  • Larson, D.E., Lin, R.P., McTiernan, J.M., McFadden, J.P., Ergun, R.E., McCarthy, M., Rème, H., Sanderson, T.R., Kaiser, M., Lepping, R.P., Mazur, J.: 1997, Tracing the topology of the October 18 – 20, 1995, magnetic cloud with 0.1−102 keV electrons. Geophys. Res. Lett. 24, 1911 – 1914.

    Article  ADS  Google Scholar 

  • Leamon, R.J., Canfield, R.C., Pevtsov, A.A.: 2002, Properties of magnetic clouds and geomagnetic storms associated eruption of coronal sigmoids. J. Geophys. Res. 107, 1234.

    Article  Google Scholar 

  • Leamon, R.J., Canfield, R.C., Jones, S.L., Lambkin, K., Lundberg, B.J., Pevtsov, A.A.: 2004, Helicity of magnetic clouds and their associated active regions. J. Geophys. Res. 109, 5106. doi: 10.1029/2003JA010324 .

    Article  Google Scholar 

  • Leka, K.D., Canfield, R.C., McClymont, A.N., Van Driel Gesztelyi, L.: 1996, Evidence for current-carrying emerging flux. Astrophys. J. Lett. 462, L547 – L560.

    Article  ADS  Google Scholar 

  • Lepping, R.P., Berdichevsky, D.B., Burlaga, L.F., Lazarus, A.J., Kasper, J., Desch, M.D., Wu, C., Reames, D.V., Singer, H.J., Smith, C.W., Ackerson, K.L.: 2001, The Bastille day magnetic clouds and upstream shocks: near-earth interplanetary observations. Solar Phys. 204, 285 – 303. doi: 10.1023/A:1014264327855 .

    Article  ADS  Google Scholar 

  • Li, Y., Luhman, J.G., Lynch, B.J., Kilpua, E.: 2011, Cyclic reversal of magnetic cloud poloidal field. Solar Phys. 269, 32 – 47. doi: 10.1007/s11207-011-9722-9 .

    Article  Google Scholar 

  • Lin, J., Raymond, J.C., van Ballegooijen, A.A.: 2004, The role of magnetic reconnection in the observable features of solar eruptions. Astrophys. J. 602, 422 – 435. doi: 10.1086/380900 .

    Article  ADS  Google Scholar 

  • Liu, C., Lee, J., Yurchyshyn, V., Deng, N., Cho, K.s., Karlický, M., Wang, H.: 2007, The eruption from a sigmoidal solar active region on 2005 May 13. Astrophys. J. 669, 1372 – 1381. doi: 10.1086/521644 .

    Article  ADS  Google Scholar 

  • Liu, J., Zhang, Y., Zhang, H.: 2008, Relationship between powerful flares and dynamic evolution of the magnetic field at the solar surface. Solar Phys. 248, 67 – 84. doi: 10.1007/s11207-008-9149-0 .

    Article  ADS  Google Scholar 

  • Longcope, D.W.: 1996, Topology and current ribbons: a model for current, reconnection and flaring in a complex, evolving corona. Solar Phys. 169, 91 – 121. doi: 10.1007/BF00153836 .

    Article  ADS  Google Scholar 

  • Longcope, D.W.: 2001, Separator current sheets: generic features in minimum-energy magnetic fields subject to flux constraints. Phys. Plasmas 8, 5277 – 5290. doi: 10.1063/1.1418431 .

    Article  ADS  Google Scholar 

  • Longcope, D.W., Magara, T.: 2004, A comparison of the minimum current corona to a magnetohydrodynamic simulation of quasi-static coronal evolution. Astrophys. J. 608, 1106 – 1123. doi: 10.1086/420780 .

    Article  ADS  Google Scholar 

  • Longcope, D.W., DesJardins, A.C., Carranza-Fulmer, T., Qiu, J.: 2010, A quantitative model of energy release and heating by time-dependent, localized reconnection in a flare with a thermal loop-top X-ray source. Solar Phys. 267, 107 – 139. doi: 10.1007/s11207-010-9635 .

    Article  ADS  Google Scholar 

  • Longcope, D.W., Beveridge, C., Qiu, J., Ravindra, B., Barnes, G., Dasso, S.: 2007, Modeling and measuring the flux reconnected and ejected by the two-ribbon flare/CME event on 7 November 2004. Solar Phys. 244, 45 – 73. doi: 10.1007/s11207-007-0330-7 .

    Article  ADS  Google Scholar 

  • Longcope, D.W., Barnes, G., Beveridge, C.: 2009, Effects of partitioning and extrapolation on the connectivity of potential magnetic fields. Astrophys. J. 693, 97 – 111. doi: 10.1088/0004-637X/693/1/97 .

    Article  ADS  Google Scholar 

  • Low, B.C.: 1994, Magnetohydrodynamic processes in the solar corona: flares, coronal mass ejections, and magnetic helicity. Phys. Plasmas 1, 1684 – 1690.

    Article  ADS  Google Scholar 

  • Luoni, M.L., Mandrini, C.H., Dasso, S., van Driel-Gesztelyi, L., Démoulin, P.: 2005, Tracing magnetic helicity from the solar corona to the interplanetary space. J. Atmos. Solar-Terr. Phys. 67, 1734 – 1743. doi: 10.1016/j.jastp.2005.07.003 .

    Article  ADS  Google Scholar 

  • Lynch, B.J., Gruesbeck, J.R., Zurbuchen, T.H., Antiochos, S.K.: 2005, Solar cycle-dependent helicity transport by magnetic clouds. J. Geophys. Res. 110, 8107. doi: 10.1029/2005JA011137 .

    Article  Google Scholar 

  • Mackay, D.H., van Ballegooijen, A.A.: 2006, Models of the large-scale corona. I. Formation, evolution, and liftoff of magnetic flux ropes. Astrophys. J. 641, 577 – 589. doi: 10.1086/500425 .

    Article  ADS  Google Scholar 

  • Mandrini, C.H., Pohjolainen, S., Dasso, S., Green, L.M., Démoulin, P., van Driel-Gesztelyi, L., Copperwheat, C., Foley, C.: 2005, Interplanetary flux rope ejected from an X-ray bright point. The smallest magnetic cloud source-region ever observed. Astron. Astrophys. 434, 725 – 740. doi: 10.1051/0004-6361:20041079 .

    Article  ADS  Google Scholar 

  • Mandrini, C.H., Demoulin, P., Schmieder, B., Deluca, E.E., Pariat, E., Uddin, W.: 2006, Companion event and precursor of the X17 flare on 28 October 2003. Solar Phys. 238, 293 – 312. doi: 10.1007/s11207-006-0205-3 .

    Article  ADS  Google Scholar 

  • Marubashi, K.: 1986, Structure of the interplanetary magnetic clouds and their solar origins. Adv. Space Res. 6, 335 – 338. doi: 10.1016/0273-1177(86)90172-9 .

    Article  ADS  Google Scholar 

  • Masuda, S., Kosugi, T., Hudson, H.S.: 2001, A hard X-ray two-ribbon flare observed with Yohkoh/HXT. Solar Phys. 204, 55 – 67. doi: 10.1023/A:1014230629731 .

    Article  ADS  Google Scholar 

  • Mewe, R., Gronenschild, E.H.B.M., van den Oord, G.H.J.: 1985, Calculated X-radiation from optically thin plasmas. V. Astron. Astrophys. Suppl. Ser. 62, 197 – 254.

    ADS  Google Scholar 

  • Mulligan, T., Russell, C.T., Luhmann, J.G.: 1998, Solar cycle evolution of the structure of magnetic clouds in the inner heliosphere. Geophys. Res. Lett. 25, 2959 – 2962. doi: 10.1029/98GL01302 .

    Article  ADS  Google Scholar 

  • Nindos, A., Zhang, J., Zhang, H.: 2003, The magnetic helicity budget of solar active regions and coronal mass ejections. Astrophys. J. Lett. 594, 1033 – 1048. doi: 10.1086/377126 .

    Article  Google Scholar 

  • November, L.J., Simon, G.W.: 1988, Precise proper-motion measurement of solar granulation. Astrophys. J. 333, 427 – 442. doi: 10.1086/166758 .

    Article  ADS  Google Scholar 

  • Pariat, E., Démoulin, P., Berger, M.A.: 2005, Photospheric flux density of magnetic helicity. Astron. Astrophys. 439, 1191 – 1203.

    Article  ADS  Google Scholar 

  • Pevtsov, A.A., Balasubramaniam, K.S.: 2003, Helicity patterns on the sun. Adv. Space Res. 32, 1867 – 1874. doi: 10.1016/S0273-1177(03)90620-X .

    Article  ADS  Google Scholar 

  • Poletto, G., Kopp, R.A.: 1986, Macroscopic electric fields during two-ribbon flares. In: Neidig, D.F. (ed.) The Lower Atmospheres of Solar Flares, National Solar Observatory, Sunspot, 453 – 465.

    Google Scholar 

  • Qiu, J., Gary, D.E.: 2003, Flare-related magnetic anomaly with a sign reversal. Astrophys. J. 599, 615 – 625. doi: 10.1086/379146 .

    Article  ADS  Google Scholar 

  • Qiu, J., Hu, Q., Howard, T.A., Yurchyshyn, V.B.: 2007, On the magnetic flux budget in low-corona magnetic reconnection and interplanetary coronal mass ejections. Astrophys. J. 659, 758 – 772. doi: 10.1086/512060 .

    Article  ADS  Google Scholar 

  • Ravindra, B., Howard, T.A.: 2010, Comparison of energies between eruptive phenomena and magnetic field in AR 10930. Bull. Astron. Soc. India 38, 147 – 163. http://cdsads.u-strasbg.fr/abs/2010BASI...38..147R .

    ADS  Google Scholar 

  • Régnier, S., Priest, E.R.: 2007, Free magnetic energy in solar active regions above the minimum-energy relaxed state. Astrophys. J. Lett. 669, L53 – L56. doi: 10.1086/523269 .

    Article  ADS  Google Scholar 

  • Rosner, R., Tucker, W.H., Vaiana, G.S.: 1978, Dynamics of the quiescent corona. Astrophys. J. Lett. 220, 643 – 655.

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., Wolfson, C.J., Zayer, I., MDI Engineering Team: 1995, The solar oscillations investigation – Michelson Doppler imager. Solar Phys. 162, 129 – 188. doi: 10.1007/BF00733429 .

    Article  ADS  Google Scholar 

  • Schrijver, C.J., Derosa, M.L., Metcalf, T.R., Liu, Y., McTiernan, J., Régnier, S., Valori, G., Wheatland, M.S., Wiegelmann, T.: 2006, Nonlinear force-free modeling of coronal magnetic fields Part I: A quantitative comparison of methods. Solar Phys. 235, 161 – 190. doi: 10.1007/s11207-006-0068-7 .

    Article  ADS  Google Scholar 

  • Sturrock, P.A.: 1968, A model of solar flares. In: Kiepenheuer, K.O. (ed.) IAU Symp. 35: Structure and Development of Solar Active Regions, IAU Symp. 35, Reidel, Dordrecht, 471 – 479.

    Chapter  Google Scholar 

  • Su, Y., Golub, L., Van Ballegooijen, A.A.: 2007, A statistical study of shear motion of the footpoints in two-ribbon flares. Astrophys. J. 655, 606 – 614. doi: 10.1086/510065 .

    Article  ADS  Google Scholar 

  • Vesecky, J.F., Antiochos, S.K., Underwood, J.H.: 1979, Numerical modeling of quasi-static loops. I. Uniform energy input. Astrophys. J. Lett. 233, L987 – L997.

    Article  ADS  Google Scholar 

  • Webb, D.F., Lepping, R.P., Burlaga, L.F., Deforest, C.E., Larson, D.E., Martin, S.F., Plunkett, S.P., Rust, D.M.: 2000, The origin and development of the May 1997 magnetic cloud. J. Geophys. Res. 105, 27251 – 27260.

    Article  ADS  Google Scholar 

  • Welsch, B.T., Abbett, W.P., DeRosa, M.L., Fisher, G.H., Georgoulis, M.K., Kusano, K., Longcope, D.W., Ravindra, B., Schuck, P.W.: 2007, Tests and comparisons of velocity inversion techniques. Astrophys. J. Lett. 670, L1434 – L1452.

    Article  ADS  Google Scholar 

  • Woods, T.N., Kopp, G., Chamberlin, P.C.: 2006, Contributions of the solar ultraviolet irradiance to the total solar irradiance during large flares. J. Geophys. Res. 111, 10. doi: 10.1029/2005JA011507 .

    Article  Google Scholar 

  • Yurchyshyn, V., Abramenko, V., Tripathi, D.: 2009, Rotation of white-light coronal mass ejection structures as inferred from LASCO coronagraph. Astrophys. J. 705, 426 – 435. doi: 10.1088/0004-637X/705/1/426 .

    Article  ADS  Google Scholar 

  • Yurchyshyn, V., Hu, Q., Abramenko, V.: 2005, Structure of magnetic fields in NOAA active regions 0486 and 0501 and in the associated interplanetary ejecta. Space Weather 3, 8. doi: 10.1029/2004SW000124 .

    Article  Google Scholar 

  • Yurchyshyn, V.B., Wang, H., Goode, P.R., Deng, Y.: 2001, Orientation of the magnetic fields in interplanetary flux ropes and solar filaments. Astrophys. J. 563, 381 – 388. doi: 10.1086/323778 .

    Article  ADS  Google Scholar 

  • Yurchyshyn, V., Liu, C., Abramenko, V., Krall, J.: 2006, The May 13, 2005 eruption: observations, data analysis and interpretation. Solar Phys. 239, 317 – 335. doi: 10.1007/s11207-006-0177-3 .

    Article  ADS  Google Scholar 

  • Yurchyshyn, V., Hu, Q., Lepping, R.P., Lynch, B.J., Krall, J.: 2007, Orientations of LASCO Halo CMEs and their connection to the flux rope structure of interplanetary CMEs. Adv. Space Res. 40, 1821 – 1826. doi: 10.1016/j.asr.2007.01.059 .

    Article  ADS  Google Scholar 

  • Zhang, Y., Liu, J., Zhang, H.: 2008, Relationship between rotating sunspots and flares. Solar Phys. 247, 39 – 52. doi: 10.1007/s11207-007-9089-0 .

    Article  ADS  Google Scholar 

  • Zhao, X.P., Hoeksema, J.T.: 1998, Central axial field direction in magnetic clouds and its relation to southward interplanetary magnetic field events and dependence on disappearing solar filaments. J. Geophys. Res. 103, 2077 – 2083. doi: 10.1029/97JA03234 .

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria D. Kazachenko.

Additional information

Solar Flare Magnetic Fields and Plasmas

Guest Editors: Y. Fan and G.H. Fisher

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazachenko, M.D., Canfield, R.C., Longcope, D.W. et al. Predictions of Energy and Helicity in Four Major Eruptive Solar Flares. Sol Phys 277, 165–183 (2012). https://doi.org/10.1007/s11207-011-9786-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-011-9786-6

Keywords

Navigation