Skip to main content
Log in

Conceptual Variation or Incoherence? Textbook Discourse on Genes in Six Countries

  • Published:
Science & Education Aims and scope Submit manuscript

Abstract

The aim of this paper is to investigate in a systematic and comparative way previous results of independent studies on the treatment of genes and gene function in high school textbooks from six different countries. We analyze how the conceptual variation within the scientific domain of Genetics regarding gene function models and gene concepts is transformed via the didactic transposition into school science textbooks. The results indicate that a common textbook discourse on genes and their function exist in textbooks from the different countries. The structure of science as represented by conceptual variation and the use of multiple models was present in all the textbooks. However, the existence of conceptual variation and multiple models is implicit in these textbooks, i.e., the phenomenon of conceptual variation and multiple models are not addressed explicitly, nor its consequences and, thus, it ends up introducing conceptual incoherence about the gene concept and its function within the textbooks. We conclude that within the found textbook-discourse ontological aspects of the academic disciplines of genetics and molecular biology were retained, but without their epistemological underpinnings; these are lost in the didactic transposition. These results are of interest since students might have problems reconstructing the correct scientific understanding from the transformed school science knowledge as depicted within the high school textbooks. Implications for textbook writing as well as teaching are discussed in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. In the case of the Brazilian textbooks, the analysis presented in this paper is different from the one originally shown in Santos et al. (2012), in which a model of gene function was ascribed to the units of context in general, i.e., as presented in the books taken as a whole. That previous approach enabled the conclusion that no genuine historical model was found in the sample, but only hybrid models in which epistemological feature-variants related to the molecular-informational or neoclassical model predominated. Therefore, in this previous analysis models found in the units of context differed only in respect to the degree of hybridization with variants from other models. The approach used here for the Brazilian sample was based on the same raw data, but attributed a model for the units of context of each book individually to make it possible to compare the results from the Swedish, International and Brazilian samples.

References

  • Amabis, J. M., & Martho, G. R. (2005). Biologia. São Paulo: Moderna.

    Google Scholar 

  • American Association for the Advancement of Science. (1990). Science for all Americans. New York: Oxford University Press.

    Google Scholar 

  • American Association for the Advancement of Science. (1993). Benchmarks for science literacy: A project 2061 report. New York: Oxford University Press.

    Google Scholar 

  • American Association for the Advancement of Science. (2011). AAAS Project 2061 high school biology textbooks evaluation. Retrieved October 23, 2011, from: http://www.project2061.org/publications/textbook/hsbio/summary/default.htm.

  • Andersson, S., Sonesson, A., Stålhandske, B., Tullberg, A., & Rydén, L. (2007). Gymnasiekemi B. Stockholm: Liber AB.

    Google Scholar 

  • Bahar, M., Johnstone, A. H., & Hansell, M. H. (1999). Revisiting learning difficulties in biology. Journal of Biological Education, 33(2), 84–86.

    Google Scholar 

  • Ball, D. L., & Feiman-Nemser, S. (1988). Using textbooks and teachers’ guides: A dilemma for beginning teachers and teacher educators. Curriculum Inquiry, 18(4), 401–423.

    Google Scholar 

  • Banet, E., & Ayuso, E. (2000). Teaching genetic at secondary school: A strategy for teaching about the location of inheritance information. Science Education, 84(3), 313–351.

    Google Scholar 

  • Banet, E., & Ayuso, G. E. (2003). Teaching of biological inheritance and evolution of living beings in secondary school. International Journal of Science Education, 25(3), 373–407.

    Google Scholar 

  • Barab, S. A., Barnett, M., & Squire, K. (2002). Developing an empirical account of a community of practice: Characterizing the essential tensions. Journal of the Learning Sciences, 11, 489–542.

    Google Scholar 

  • Bardin, L. (2000). Análise de conteúdo. Lisboa, Portugal: Edições 70.

  • Beltrán, I. B., Ramalho, B. L., Silva, I. P., & Campos, A. N. (2003). A seleção dos livros didáticos: Um saber necessário ao professor. O caso do ensino de Ciências. Revista Iberoamericana de Educación, 25/04/03.

  • Bizzo, N. (1994). From Down House landlord to Brazilian high school students: What has happened to evolutionary knowledge on the way? Journal of Research in Science Teaching, 31(5), 537–556.

    Google Scholar 

  • Black, M. (1962). Models and metaphors: Studies in language and philosophy. Ithaca: Cornell University Press.

    Google Scholar 

  • Borba, A. A., & Cançado, O. F. L. (2005). Biologia. Curitiba: Positivo.

    Google Scholar 

  • Borba, A. A., Crozetta, M. A. S., & Lago, S. R. (2005). Biologia. São Paulo: IBEP.

    Google Scholar 

  • Borén, B., Larsson, M., Lif, L., Lillieborg, S., & Lindh, B. (2004). Kemiboken B (3rd ed.). Stockholm: Liber AB.

    Google Scholar 

  • Bosch, M., Chevallard, Y., & Gascón, J. (2005). Science or magic? The use of models and theories in didactics of mathematics. Paper presented at the 4th congress of ERME, the European Society for Research in Mathematics Education. Sant Feliu de Guíxols, Spain. Retrieved October 14, 2011 from: http://cerme4.crm.es/Papers%20definitius/11/Bosch%20Chevall.pdf.

  • Boschilia, C. (2005). Biologia sem segredos. São Paulo: RIDEEL.

    Google Scholar 

  • Brazil (2006). Orientações curriculares para o ensino médio, vol. 2: Ciências da natureza, matemática e suas tecnologias. Brasília: Ministério da Educação.

  • Burian, R. M. (1985). On conceptual change in biology: The case of the gene. In D. J. Depew & B. H. Weber (Eds.), Evolution at a crossroads: The new biology and the new philosophy of science (pp. 21–24). Cambridge: MIT Press.

    Google Scholar 

  • Burian, R. M. (2002). “Historical realism”, “contextual objectivity”, and changing concepts of the gene. In L. Hahn & R. Auxier (Eds.), The philosophy of Marjorie Grene (pp. 339–360). Peru: Open Court Library of Living Philosophers.

    Google Scholar 

  • Buxton, C. A. (2006). Creating contextually authentic science in a “low-performing” urban elementary school. Journal of Research in Science Teaching, 43(7), 695–721.

    Google Scholar 

  • Cadogan, A. (2000). Biological nomenclature: Standard terms and expressions used in the teaching of biology (3rd ed.). London: The Institute of Biology.

    Google Scholar 

  • Campbell, N. A., & Reece, J. B. (2005). Biology (7th ed.). San Francisco: Pearson Education.

    Google Scholar 

  • Carlson, A. E. (1966). The gene. A critical history. Philadelphia: W. B. Saunders.

    Google Scholar 

  • Carlson, E. A. (2004). Mendel’s legacy: The origin of classical genetics. New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Carvalho, W. (2005). Biologia em foco. São Paulo: FTD.

    Google Scholar 

  • Carver, R., Waldahl, R., & Breivik, J. (2008). Frame that gene: A tool for analyzing and classifying the communication of genetics to the public. EMBO Reports, 9(10), 943–947.

    Google Scholar 

  • Castéra, J., Bruguiére, C., Clément, P., et al. (2008a). Genetic diseases and genetic determinism models in French secondary school biology textbooks. Journal of Biological Education, 42(2), 53–59.

    Google Scholar 

  • Castéra, J., Clément, P., Abrougui, M., et al. (2008b). Genetic determinism in school textbooks: A comparative study among sixteen countries. Science Education International, 19(2), 163–184.

    Google Scholar 

  • Cheida, L. E. (2005). Biologia integrada. São Paulo: FTD.

    Google Scholar 

  • Chevallard, Y. (1989). On didactic transposition theory: Some introductory notes. Paper presented at the International symposium on selected domains of research and development in mathematics education, Proceedings (pp. 51–62). Bratislava, Slovakia. Retrieved October 29, 2011 from: http://yves.chevallard.free.fr/spip/spip/article.php3?id_article=122.

  • Chinn, A. C., & Samarapungavan, A. (2008). Learning to use scientific models: Multiple dimensions of conceptual change. In R. A. Duschl & R. E. Grandy (Eds.), Teaching scientific inquiry (pp. 191–225). Rotterdam: Sense Publishers.

    Google Scholar 

  • Cho, H. M., Kahle, J. B., & Nordland, F. H. (1985). An investigation of high school biology textbooks as sources of misconceptions and difficulties in genetics and some suggestions for teaching genetics. Science Education, 69(5), 707–719.

    Google Scholar 

  • Claridge, M. F. (2010). Species are real biological entities. In F. J. Ayala & R. Arp (Eds.), Contemporary debates in philosophy of biology (pp. 91–109). Oxford: Blackwell.

    Google Scholar 

  • Coimbra, M. A. C., Rubio, P. C., Corazzini, R., Rodrigues, R. N. C., & Waldhelm, M. C. V. (2005). Biologia: Projeto escola e cidadania para todos. São Paulo: Editora do Brasil.

    Google Scholar 

  • Condit, C. M., Ferguson, A., Kassel, R., Tadhani, C., Gooding, H. C., & Parrot, R. (2001). An explanatory study of the impact of news headlines on genetic determinism. Science Communication, 22, 379–395.

    Google Scholar 

  • Condit, C. M., Ofulue, N., & Sheedy, K. M. (1998). Determinism and mass-media portrayals of genetics. American Journal of Human Genetics, 62, 979–984.

    Google Scholar 

  • Cook, M. P. (2006). Visual representations in science education: The influence of prior knowledge and cognitive load theory on instructional design principles. Science Education, 90, 1073–1091.

    Google Scholar 

  • Daston, L., & Galison, P. (2010). Objectivity. Brooklyn: Zone Books.

    Google Scholar 

  • Dawkins, R. (1982). The extended phenotype. Oxford: Oxford University Press.

    Google Scholar 

  • Dawkins, R. (1989). The selfish gene. Oxford: Oxford University Press.

    Google Scholar 

  • Develaki, M. (2007). The model-based view of scientific theories and the structuring of school science programs. Science & Education, 16(7–8), 725–749.

    Google Scholar 

  • Di Giuseppe, M., Vavitas, A., Ritter, B., Fraser, D., Arora, A., & Lisser, B. (2003). Nelson biology 12. Toronto: Nelson Thomson Learning.

    Google Scholar 

  • DiGisi, L. L., & Wilett, J. B. (1995). What high school biology teachers say about their textbook use: A descriptive study. Journal of Research in Science Teaching, 32(2), 123–142.

    Google Scholar 

  • Dove, A. (2009). Epigenetics: The final frontier? Science, 326(5950), 303–305.

    Google Scholar 

  • Duit, R., & Treagust, D. F. (2003). Learning in science: From behaviourism towards social constructivism and beyond. In B. J. Fraser & K. G. Tobin (Eds.), International handbook of science education (1st ed., pp. 3–25). Dordrech: Kluwer.

    Google Scholar 

  • Duncan, R. G., & Reiser, B. J. (2007). Reasoning across ontologically distinct levels: Students’ understanding of molecular genetics. Journal of Research in Science Teaching, 44(7), 938–959.

    Google Scholar 

  • Durant, J., Hansen, A., & Bauer, M. (1999). Public understanding of the new genetics. In T. Marteau & M. Richards (Eds.), The troubled helix: Social and psychological implications of the new human genetics (pp. 235–248). Cambridge: Cambridge University Press.

    Google Scholar 

  • Dutra, L. H. (2009). Introdução à teoria da ciência. Florianópolis: UFSC.

    Google Scholar 

  • Edling, A. (2006). Abstraction and authority in textbooks: The textual paths towards specialized language. Uppsala: Acta Universitatis Upsaliensis.

    Google Scholar 

  • Ekvall, U. (2001). Den styrande läroboken. In B. Melander & B. Olsson (Eds.), Verklighetens texter: Sjutton fallstudier (pp. 43–80). Lund: Studentlitteratur.

    Google Scholar 

  • El-Hani, C. N. (2007). Between the cross and the sword: The crisis of the gene concept. Genetics and Molecular Biology, 30(2), 297–307.

    Google Scholar 

  • El-Hani, C. N., Queiroz, J., & Emmeche, C. (2006). A semiotic analysis of the genetic information system. Semiotica, 160(1/4), 1–68.

    Google Scholar 

  • El-Hani, C. N., Queiroz, J., & Emmeche, C. (2009). Genes, information, and semiosis. Tartu: Tartu University Press (Tartu Semiotics Library).

    Google Scholar 

  • El-Hani, C. N., Roque, N., & Rocha, P. B. (2007). Brazilian high school biology textbooks: Results from a national program. In Proceedings of the IOSTE international meeting on critical analysis of school science textbook (pp. 505–516). Hammamet, Tunisia: University of Tunis.

  • El-Hani, C. N., Roque, N., & Rocha, P. L. B. (2011). Livros didáticos de Biologia do ensino médio: Resultados do PNLEM/2007. Educação em Revista, 27(1), 211–240.

    Google Scholar 

  • Engström, C., Backlund, P., Berger, R., & Grennberg, H. (2008). Kemi B tema och teori (2nd ed.). Stockholm: Bonnier Utbildning.

    Google Scholar 

  • Evans, B., Ladiges, P., McKenzie, J., Batterham, P., & Sanders, Y. (2005a). Heinemann biology 2 (4th ed.). Melbourne: Harcourt Education.

    Google Scholar 

  • Evans, B., Ladiges, P., McKenzie, J., & Sanders, Y. (2005b). Heinemann biology 1 (4th ed.). Melbourne: Harcourt Education.

    Google Scholar 

  • Falk, R. (1986). What is a gene? Studies in History and Philosophy of Science, 17(2), 133–173.

    Google Scholar 

  • Faucz, F. R., & Quintilham, C. T. (2005). Biologia: Caminho da vida. Curitiba: Base.

    Google Scholar 

  • Favaretto, J. A., & Mercadante, C. (2005). Biologia. São Paulo: Moderna.

    Google Scholar 

  • Finley, F. N., Stewart, J., & Yarroch, W. L. (1982). Teachers’ perception of important and difficult science content: The report of a survey. Science Education, 66(4), 531–538.

    Google Scholar 

  • Fleck, L. ([1935]1979). Genesis and development of a scientific fact. Chicago: The University of Chicago Press.

  • Flodin, V. (2009). The necessity of making visible concepts with multiple meanings in science education: The use of the gene concept in biology textbook. Science & Education, 18(1), 73–94.

    Google Scholar 

  • Fogle, T. (1990). Are genes units of inheritance? Biology and Philosophy, 5(3), 349–371.

    Google Scholar 

  • Frota-Pessoa, O. (2005). Biologia. São Paulo: Scipione.

    Google Scholar 

  • Gainotti, A., & Modelli, A. (2005). Biologia. São Paulo: Scipione.

    Google Scholar 

  • Gayán, E., & García, P. E. (1997). Como escoger un libro de texto? Desarrollo de un instrumento para evaluar los libros de texto de ciencias experimentales. Enseñanza de las Ciencias (Número Extra, V Congresso), pp 249–250.

  • Gericke, N. M., & Hagberg, M. (2007). Definition of historical models of gene function and their relation to students’ understanding of genetics. Science & Education, 16(7–8), 849–881.

    Google Scholar 

  • Gericke, N. M., & Hagberg, M. (2010a). Conceptual incoherence as a result of the use of multiple historical models in school textbooks. Research in Science Education, 40(4), 605–623.

    Google Scholar 

  • Gericke, N. M., & Hagberg, M. (2010b). Conceptual variation in the depiction of gene function in upper secondary school textbooks. Science & Education, 19(10), 963–994.

    Google Scholar 

  • Gericke, N. M., Hagberg, M., & Jorde, D. (2012). Upper students’ understanding of the use of multiple models in biology textbooks: The importance of conceptual variation and incommensurability. Research in Science Education,. doi:10.1007/s11165-012-9288-z.

    Google Scholar 

  • Gerstein, M. B., Bruce, C., Rozowsky, J. S., Zheng, D., Du, J., Korbel, J. O., et al. (2007). What is a gene, post-ENCODE? History and updated definition. Genome Research, 17(6), 669–681.

    Google Scholar 

  • Gilbert, J. K., Pietrocola, M., Zylbersztajn, A., & Franco, C. (2000). Science and education: Notions of reality, theory and model. In J. K. Gilbert & C. Boulter (Eds.), Developing models in science education (pp. 19–40). Dordrecht: Kluwer.

    Google Scholar 

  • Grandy, R. E. (2003). What are models and why do we need them? Science & Education, 12(8), 773–777.

    Google Scholar 

  • Griffis, K., Thadani, V., & Wise, J. (2008). Making authentic data accessible: The sensing the environment inquiry module. Journal of Biological Education, 42(3), 119–122.

    Google Scholar 

  • Griffiths, P. E., & Neumann-Held, E. (1999). The many faces of the gene. BioScience, 49(8), 656–662.

    Google Scholar 

  • Hackling, M., & Treagust, D. (1984). Research data necessary for meaningful review of grade ten high school genetics curricula. Journal of Research in Science Teaching, 21(2), 197–209.

    Google Scholar 

  • Hall, A., Reiss, M., Rowell, C., Scott, A., Codrington, S., & Newton, N. (Eds.). (2005). Salters-Nuffield advanced biology AS. Oxford: Harcourt Educational Limited.

    Google Scholar 

  • Hall, A., Reiss, M., Rowell, C., Scott, A., Codrington, S., & Newton, N. (Eds.). (2006). Salters-Nuffield advanced biology A2. Oxford: Harcourt Educational Limited.

    Google Scholar 

  • Halldén, O. (1990). Questions asked in common sense contexts and in scientific contexts. In P. L. Lijnse, P. Licht, W. de Vos, & A. J. Waarlo (Eds.), Relating macroscopic phenomena to microscopic particles (pp. 119–130). Utrecht: CD-β Press.

    Google Scholar 

  • Halloun, I. A. (2004). Modeling theory in science education. Dordrecht: Kluwer.

    Google Scholar 

  • Halloun, I. A. (2007). Mediated modeling in science education. Science & Education, 16, 653–697.

    Google Scholar 

  • Henriksson, A. (2005). Kemi kurs B. Malmö: Gleerups Förlag.

    Google Scholar 

  • Henriksson, A. (2007a). Biologi kurs A (2nd ed.). Malmö: Gleerups Förlag’.

    Google Scholar 

  • Henriksson, A. (2007b). Biologi kurs B (2nd ed.). Malmö: Gleerups Förlag.

    Google Scholar 

  • Hesse, M. B. (1963). Models and analogies in science. London: Seed and Ward.

    Google Scholar 

  • Joaquim, L. M. (2009). Gene: Questões epistemológicas, conceitos relacionados e visões de estudantes de graduação. Salvador-BA: Graduate Studies Program in History, Philosophy, and Science Teaching (UFBA/UEFS).

  • Johnsen, E. G. (1993). Textbooks in the kaleidoscope: A critical survey of literature and research on educational texts. Oslo: Scandinavian University Press.

    Google Scholar 

  • Johnstone, A. H., & Mahmoud, N. A. (1980). Isolating topics of high perceived difficulty in school biology. Journal of Biological Education, 14(2), 163–166.

    Google Scholar 

  • Juhlin Svensson, A.-C. (2000). Nya redskap för lärandeStudier av lärares val och användning av läromedel i gymnasieskolan. Studies in Educational Sciences 23. Stockholm: HLS Förlag.

  • Justi, R. S., & Gilbert, J. K. (1999). A cause of ahistorical science teaching: Use of hybrid models. Science Education, 83(2), 163–177.

    Google Scholar 

  • Justi, R. S., & Gilbert, J. K. (2000). History and philosophy of science through models: Some challenges in the case of “the atom”. International Journal of Science Education, 22(9), 993–1009.

    Google Scholar 

  • Justi, R. S., & Gilbert, J. K. (2003). Teachers’ views on the nature of models. International Journal of Science Education, 25(11), 1369–1386.

    Google Scholar 

  • Karlsson, J., Krigsman, T., Molander, B.-O., & Wickman, P.-O. (2007). Biologi A med naturkunskap (3rd ed.). Stockholm: Liber AB.

    Google Scholar 

  • Karlsson, J., Molander, B.-O., & Wickman, P.-O. (2008). Biologi B (3rd ed.). Stockholm: Liber AB.

    Google Scholar 

  • Kay, L. E. (2000). Who wrote the book of life? A history of the genetic code. Stanford: Stanford University Press.

    Google Scholar 

  • Keller, E. F. (2000). The century of the gene. Cambridge: Harvard University Press.

    Google Scholar 

  • Keller, E. F. (2005). The century beyond the gene. Journal of Biosciences, 30(1), 3–10.

    Google Scholar 

  • Kendler, K. S. (2005). “A gene for…”: The nature of gene action in psychiatric disorders. American Journal of Psychiatry, 162, 1243–1252.

    Google Scholar 

  • Kincaid, H. (1990). Molecular biology and the unity of science. Philosophy of Science, 57, 575–593.

    Google Scholar 

  • Kitcher, P. (1982). Genes. British Journal for the Philosophy of Science, 33(4), 337–359.

    Google Scholar 

  • Knain, E. (2001). Ideologies in school science textbooks. International Journal of Science Education, 23(3), 319–329.

    Google Scholar 

  • Knight, R. (2007). Reports of the death of the gene are greatly exaggerated. Biology and Philosophy, 22, 293–306.

    Google Scholar 

  • Knippels, M. C. P. J. (2002). Coping with the abstract and complex nature of genetics in biology education: The yo–yo learning and teaching strategy. Utrecht: CD-β Press.

    Google Scholar 

  • Lambert, D. (1999). Exploring the use of textbooks in Key Stage 3 geography classrooms: A small-scale study. The Curriculum Journal, 10(1), 85–105.

    Google Scholar 

  • Laurence, J. (2005). Biologia. São Paulo: Nova Geração.

    Google Scholar 

  • Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. New York: Cambridge University Press.

    Google Scholar 

  • Leonard, W. H., & Penick, J. E. (2003). Biology: A community in context. New York: Glencoe McGraw-Hill.

    Google Scholar 

  • Lewis, J. (2000). Genes, chromosomes, cell division and inheritance: Do students see any relationship? International Journal of Science Education, 22(2), 177–195.

    Google Scholar 

  • Lewis, J., & Kattmann, U. (2004). Traits, genes, particles and information: Re-visiting students’ understandings of genetics. International Journal of Science Education, 26(2), 195–206.

    Google Scholar 

  • Lewis, J., Leach, J., & Wood-Robinson, C. (2000). All in the genes? Young people’s understanding of the nature of genes. Journal of Biological Education, 34(2), 74–79.

    Google Scholar 

  • Lewontin, R. C., Rose, S., & Kamin, L. J. (1984). Not in our genes: Biology, ideology, and human nature. New York: Pantheon.

    Google Scholar 

  • Linhares, S., & Gewandsznajder, F. (2005). Biologia. São Paulo: Ática.

    Google Scholar 

  • Ljunggren, L., Söderberg, B., & Ahlin, S. (2006). Liv i utveckling B: Biologi gymnasieskolan (2nd ed.). Stockholm: Natur och Kultur.

    Google Scholar 

  • Ljunggren, L., Söderberg, B., & Ahlin, S. (2007). Liv i utveckling A: Biologi gymnasieskolan (2nd ed.). Stockholm: Natur och Kultur.

    Google Scholar 

  • Lopes, S., & Rosso, S. (2005). Biologia. São Paulo: Saraiva.

    Google Scholar 

  • Lüning, B., Nordlund, S., Norrby, L.-J., & Peterson, A. (2009). Modell och verklighet B (2nd ed.). Stockholm: Natur och Kultur.

    Google Scholar 

  • Machado, S. W. S. (2005). Biologia. São Paulo: Scipione.

    Google Scholar 

  • Marbach-Ad, G. (2001). Attempting to break the code in student comprehension of genetic concepts. Journal of Biological Education, 35(4), 183–189.

    Google Scholar 

  • Marbach-Ad, G., & Stavy, R. (2000). Students’ cellular and molecular explanations of genetic phenomena. Journal of Biological Education, 34(4), 200–205.

    Google Scholar 

  • Martinez-Gracia, M. V., Gil-Quilez, M. J., & Osada, J. (2006). Analysis of molecular genetics content in Spanish secondary school textbooks. Journal of Biological education, 40(2), 53–60.

    Google Scholar 

  • Matthews, M. R. (1994). Science teaching: The role of history and philosophy of science. New York: Routledge.

    Google Scholar 

  • Matthews, M. R. (2007). Models in science and science education: An introduction. Science & Education, 16(7–8), 647–652.

    Google Scholar 

  • Mayr, E. (1982). The growth of biological thought: Diversity, evolution and inheritance. Cambridge: The Belknap Press of Harvard University Press.

    Google Scholar 

  • Mayr, E. (1997). This is biology: The science of the living world. Cambridge: The Belknap Press of Harvard University Press.

    Google Scholar 

  • Mbajiorgu, N. M., Ezechi, N. G., & Idoko, E. C. (2007). Addressing non-scientific presuppositions in genetics using a conceptual change strategy. Science Education, 91(3), 419–438.

    Google Scholar 

  • Meyer, L. M. N., Bomfim, G. C., & El-Hani, C. N. (2011). How to understand the gene in the twenty first century. Science & Education. doi:10.1007/s11191-011-9390-z.

  • Mishler, B. D. (2010). Species are not uniquely real biological entities. In F. J. Ayala & R. Arp (Eds.), Contemporary debates in philosophy of biology (pp. 110–122). Oxford: Blackwell.

    Google Scholar 

  • Monk, M., & Osborne, J. (1997). Placing the history and philosophy of science on the curriculum: A model for the development of pedagogy. Science Education, 81, 405–424.

    Google Scholar 

  • Moody, D. E. (2000). The paradox of the textbook. In K. M. Fisher, J. H. Wandersee, & D. E. Moody (Eds.), Mapping biology knowledge (pp. 167–184). Dordrecht: Kluwer.

    Google Scholar 

  • Morandini, C., & Bellinello, L. C. (2005). Biologia. São Paulo: Atual.

    Google Scholar 

  • Mortimer, E. F., & Scott, P. H. (2003). Meaning making in secondary science classrooms. Maidenhead: Open University Press.

    Google Scholar 

  • Moss, L. (2001). Deconstructing the gene and reconstructing molecular developmental systems. In S. Oyama, P. Griffiths, & R. Gray (Eds.), Cycles of contingency: Developmental systems and evolution (pp. 85–97). Cambridge: MIT Press.

    Google Scholar 

  • Moss, L. (2003). What genes can’t do. Cambridge: MIT Press.

    Google Scholar 

  • Nelkin, D., & Lindee, S. M. (1995). The DNA mystique: The gene as a cultural icon. New York: Freeman.

    Google Scholar 

  • Neuendorf, K. A. (2002). The content analysis guidebook. Thousand Oaks: Sage.

    Google Scholar 

  • Neumann-Held, E. (1999). The gene is dead–long live the gene: Conceptualizing genes the constructionist way. In P. Koslowski (Ed.), Sociobiology and bioeconomics: The theory of evolution in biological and economic thinking (pp. 105–137). Berlin: Springer.

    Google Scholar 

  • Newmann, F. M., Bryk, A. S., & Nagaoka, J. K. (2001). Authentic intellectual work and standardized tests: Conflict or coexistence? Chicago: Consortium on Chicago School Research.

  • Paulino, W. R. (2005). Biologia. São Paulo: Ática.

    Google Scholar 

  • Peinerud, I.-L., Lager-Nyqvist, L., & Lundegård, I. (2003). Biologi B (3rd ed.). Stockholm: Bonnier utbildning AB.

    Google Scholar 

  • Peinerud, I.-L., Lager-Nyqvist, L., & Lundegård, I. (2006). Biologi A (3rd ed.). Stockholm: Bonnier utbildning AB.

    Google Scholar 

  • Portin, P. (1993). The concept of the gene: Short history and present status. Quarterly Review of Biology, 56, 173–223.

    Google Scholar 

  • Rheinberger, H.-J. (2000). Gene concepts: Fragments from the perspective of molecular biology. In P. Beurton, R. Falk, & H.-J. Rheinberger (Eds.), The concept of the gene in development and evolution (pp. 219–239). Cambridge: Cambridge University Press.

    Google Scholar 

  • Richards, M. P., & Ponder, M. (1996). Lay understanding of genetics: A test of hypothesis. Journal of Medical Genetics, 33(12), 1032–1036.

    Google Scholar 

  • Ritter, B., Adam-Carr, C., & Fraser, D. (2002). Nelson biology 11. Toronto: Nelson Thomson Learning.

    Google Scholar 

  • Rosenberg, A. (1985). The structure of biological science. Cambridge: Cambridge University Press.

    Google Scholar 

  • Roth, W.-M. (1995). Authentic school science. Dordrecht: Kluwer.

    Google Scholar 

  • Sadler, T. D. (2011). Foreword. In T. D. Sadler (Ed.), Socio-scientific issues in the classroom: Teaching, learning and research. Dordrecht: Springer.

    Google Scholar 

  • Sadler, T. D., & Zeidler, D. L. (2004). The morality of socioscientific issues: Construal and resolution of genetic engineering dilemmas. Science Education, 88(1), 4–27.

    Google Scholar 

  • Sadler, T. D., & Zeidler, D. L. (2005). The significance of content knowledge for informal reasoning regarding socioscientific issues: Applying genetics knowledge to genetic engineering issues. Science Education, 89(1), 71–93.

    Google Scholar 

  • Sánchez Arteaga, J. M., & El-Hani, C. N. (2012). Othering processes and STS curricula: From 19th century scientific discourse on interracial competition and racial extinction to othering in biomedical technosciences. Science & Education, 21(5), 607–629.

  • Santos, V. C., & El-Hani, C. N. (2009). Idéias sobre genes em livros didáticos de biologia do ensino médio publicados no Brasil. Revista Brasileira de Pesquisa em Educação em Ciências, 9(1), a6.

    Google Scholar 

  • Santos, V. C., Joaquim, L. M., & El-Hani, C. N. (2012). Hybrid deterministic views about genes in biology textbooks: A key problem in genetics teaching. Science & Education, 21(4), 543–578.

    Google Scholar 

  • Scherrer, K., & Jost, J. (2007a). The gene and the genon concept: A functional and information-theoretic analysis. Molecular System Biology, 3(1), 1–11.

    Google Scholar 

  • Scherrer, K., & Jost, J. (2007b). The gene and the genon concept: Coding versus regulation. A conceptual and information-theoretic analysis storage and expression in the light of modern molecular biology. Theory in Biosciences, 126(2–3), 65–113.

    Google Scholar 

  • Schwab, J. (1964). Structure of the disciplines: Meaning & significances. In G. W. Ford & L. Pugno (Eds.), The structure of knowledge & the curriculum. Chicago: Rand, McNally & Co.

    Google Scholar 

  • Shymansky, J. A., Yore, L. D., & Good, R. (1991). Elementary school teachers’ beliefs about and perceptions of elementary school science, science reading, science textbooks, and supportive instructional factors. Journal of Research in Science Teaching, 28, 437–454.

    Google Scholar 

  • Silva-Júnior, C., & Sasson, S. (2005). Biologia. São Paulo: Saraiva.

    Google Scholar 

  • Sjøberg, S. (1998). Naturfag som allmenndannelse: En kritisk fagdidaktikk. Oslo: Gyldendal.

    Google Scholar 

  • Smith, A. L., & Williams, M. J. (2007). “It’s the X and Y thing”: Cross-sectional and longitudinal changes in children’s understanding of genes. Research in Science Education, 37(4), 407–422.

    Google Scholar 

  • Smolicz, J. J., & Nunan, E. E. (1975). The philosophical and sociological foundations of science education: The demythologizing of school science. Studies in Science Education, 2(1), 101–143.

    Google Scholar 

  • Stewart, J., Hafner, R., & Dale, M. (1990). Students’ alternative views of meiosis. The American Biology Teacher, 52(4), 228–232.

    Google Scholar 

  • Stotz, K., Griffiths, P. E., & Knight, R. (2004). How biologists conceptualize genes: An empirical study. Studies in the History and Philosophy of Biological and Biomedical Sciences, 35, 647–673.

    Google Scholar 

  • Suppe, F. (1977). The structure of scientific theories. Urbana: University of Illinois Press.

    Google Scholar 

  • The Swedish National Agency for Education (2011). Steering documents: Programme objectives: The aims, the structure and nature of the Natural Science Programme for upper secondary school in Sweden. Retrieved October 19, 2011, from: http://www3.skolverket.se/ki03/front.aspx?sprak=ENandar=0809andinfotyp=15andskolform=21andid=14andextraId=0.

  • Tolman, R. (1982). Difficulties in genetics problem solving. The American Biology Teacher, 44(9), 525–527.

    Google Scholar 

  • Tytler, R., Symington, D., Kirkwood, V., & Malcolm, C. (2008). Engaging students in authentic science through school–community links: Learning from the rural experience. Teaching Science, 54(3), 13–18.

    Google Scholar 

  • Van Driel, J. H., & Verloop, N. (1999). Teachers’ knowledge of models and modelling in science. International Journal of Science Education, 21(11), 1141–1153.

    Google Scholar 

  • Van Eijick, M., & Roth, W.-M. (2009). Authentic science experiences as a vehicle to change students’ orientations toward science and scientific career choices: Learning from the path followed by Brad. Cultural Studies of Science Education, 4, 611–638.

    Google Scholar 

  • Van Fraassen, B. (1980). The scientific image. Oxford: Clarendon Press.

    Google Scholar 

  • Venville, G. J., & Treagust, D. F. (1998). Exploring conceptual change in genetics using a multidimensional interpretive framework. Journal of Research in Science Teaching, 35(9), 1031–1055.

    Google Scholar 

  • Weber, M. (2004) Walking on the chromosome: Drosophila and the molecularization of development. In J. P. Gaudilliére, & H.-J.Rheinberger (Eds.), From molecular genetics to genomics: The mapping cultures of twentieth-century genetics (pp. 63–78). London, New York: Routledge.

  • Wenger, E. (1998). Communities of practice: Learning, meaning, and identity. New York: Cambridge University Press.

    Google Scholar 

  • Wennberg, G. (1990). Geografi och skolgeografi; ett ämnes förändringar. Uppsala, Sweden: Acta Universitatis Upsaliensis, Uppsala Studies in Education.

  • Wikman, T. (2004). På spaning efter den goda läroboken: Om pedagogiska texters lärande potential. Turku: Åbo Akademis förlag.

    Google Scholar 

  • Williams, G. C. (1966). Adaptation and natural selection. Princeton: Princeton University Press.

    Google Scholar 

  • Wood-Robinson, C. (1994). Young people’s ideas about inheritance and evolution. Studies in Science Education, 24(1), 29–47.

    Google Scholar 

  • Wood-Robinson, C., Lewis, J., & Leach, J. (2000). Young people’s understanding of the nature of genetic information in the cells of an organism. Journal of Biological Education, 35(1), 29–35.

    Google Scholar 

  • Yore, L. D. (1991). Secondary science teachers’ attitudes toward and beliefs about science reading and science textbooks. Journal of Research in Science Teaching, 28, 55–72.

    Google Scholar 

  • Zwart, H. (2008). Understanding the human genome project: A biographical approach. New Genetics & Society, 27(4), 353–376.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niklas M. Gericke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gericke, N.M., Hagberg, M., dos Santos, V.C. et al. Conceptual Variation or Incoherence? Textbook Discourse on Genes in Six Countries. Sci & Educ 23, 381–416 (2014). https://doi.org/10.1007/s11191-012-9499-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-012-9499-8

Keywords

Navigation