Science & Education

, Volume 23, Issue 2, pp 381–416 | Cite as

Conceptual Variation or Incoherence? Textbook Discourse on Genes in Six Countries

  • Niklas M. GerickeEmail author
  • Mariana Hagberg
  • Vanessa Carvalho dos Santos
  • Leyla Mariane Joaquim
  • Charbel N. El-Hani


The aim of this paper is to investigate in a systematic and comparative way previous results of independent studies on the treatment of genes and gene function in high school textbooks from six different countries. We analyze how the conceptual variation within the scientific domain of Genetics regarding gene function models and gene concepts is transformed via the didactic transposition into school science textbooks. The results indicate that a common textbook discourse on genes and their function exist in textbooks from the different countries. The structure of science as represented by conceptual variation and the use of multiple models was present in all the textbooks. However, the existence of conceptual variation and multiple models is implicit in these textbooks, i.e., the phenomenon of conceptual variation and multiple models are not addressed explicitly, nor its consequences and, thus, it ends up introducing conceptual incoherence about the gene concept and its function within the textbooks. We conclude that within the found textbook-discourse ontological aspects of the academic disciplines of genetics and molecular biology were retained, but without their epistemological underpinnings; these are lost in the didactic transposition. These results are of interest since students might have problems reconstructing the correct scientific understanding from the transformed school science knowledge as depicted within the high school textbooks. Implications for textbook writing as well as teaching are discussed in the paper.


Historical Model Conceptual Variation Genetic Determinism Socioscientific Issue Epistemic Practice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Amabis, J. M., & Martho, G. R. (2005). Biologia. São Paulo: Moderna.Google Scholar
  2. American Association for the Advancement of Science. (1990). Science for all Americans. New York: Oxford University Press.Google Scholar
  3. American Association for the Advancement of Science. (1993). Benchmarks for science literacy: A project 2061 report. New York: Oxford University Press.Google Scholar
  4. American Association for the Advancement of Science. (2011). AAAS Project 2061 high school biology textbooks evaluation. Retrieved October 23, 2011, from:
  5. Andersson, S., Sonesson, A., Stålhandske, B., Tullberg, A., & Rydén, L. (2007). Gymnasiekemi B. Stockholm: Liber AB.Google Scholar
  6. Bahar, M., Johnstone, A. H., & Hansell, M. H. (1999). Revisiting learning difficulties in biology. Journal of Biological Education, 33(2), 84–86.Google Scholar
  7. Ball, D. L., & Feiman-Nemser, S. (1988). Using textbooks and teachers’ guides: A dilemma for beginning teachers and teacher educators. Curriculum Inquiry, 18(4), 401–423.Google Scholar
  8. Banet, E., & Ayuso, E. (2000). Teaching genetic at secondary school: A strategy for teaching about the location of inheritance information. Science Education, 84(3), 313–351.Google Scholar
  9. Banet, E., & Ayuso, G. E. (2003). Teaching of biological inheritance and evolution of living beings in secondary school. International Journal of Science Education, 25(3), 373–407.Google Scholar
  10. Barab, S. A., Barnett, M., & Squire, K. (2002). Developing an empirical account of a community of practice: Characterizing the essential tensions. Journal of the Learning Sciences, 11, 489–542.Google Scholar
  11. Bardin, L. (2000). Análise de conteúdo. Lisboa, Portugal: Edições 70.Google Scholar
  12. Beltrán, I. B., Ramalho, B. L., Silva, I. P., & Campos, A. N. (2003). A seleção dos livros didáticos: Um saber necessário ao professor. O caso do ensino de Ciências. Revista Iberoamericana de Educación, 25/04/03.Google Scholar
  13. Bizzo, N. (1994). From Down House landlord to Brazilian high school students: What has happened to evolutionary knowledge on the way? Journal of Research in Science Teaching, 31(5), 537–556.Google Scholar
  14. Black, M. (1962). Models and metaphors: Studies in language and philosophy. Ithaca: Cornell University Press.Google Scholar
  15. Borba, A. A., & Cançado, O. F. L. (2005). Biologia. Curitiba: Positivo.Google Scholar
  16. Borba, A. A., Crozetta, M. A. S., & Lago, S. R. (2005). Biologia. São Paulo: IBEP.Google Scholar
  17. Borén, B., Larsson, M., Lif, L., Lillieborg, S., & Lindh, B. (2004). Kemiboken B (3rd ed.). Stockholm: Liber AB.Google Scholar
  18. Bosch, M., Chevallard, Y., & Gascón, J. (2005). Science or magic? The use of models and theories in didactics of mathematics. Paper presented at the 4th congress of ERME, the European Society for Research in Mathematics Education. Sant Feliu de Guíxols, Spain. Retrieved October 14, 2011 from:
  19. Boschilia, C. (2005). Biologia sem segredos. São Paulo: RIDEEL.Google Scholar
  20. Brazil (2006). Orientações curriculares para o ensino médio, vol. 2: Ciências da natureza, matemática e suas tecnologias. Brasília: Ministério da Educação.Google Scholar
  21. Burian, R. M. (1985). On conceptual change in biology: The case of the gene. In D. J. Depew & B. H. Weber (Eds.), Evolution at a crossroads: The new biology and the new philosophy of science (pp. 21–24). Cambridge: MIT Press.Google Scholar
  22. Burian, R. M. (2002). “Historical realism”, “contextual objectivity”, and changing concepts of the gene. In L. Hahn & R. Auxier (Eds.), The philosophy of Marjorie Grene (pp. 339–360). Peru: Open Court Library of Living Philosophers.Google Scholar
  23. Buxton, C. A. (2006). Creating contextually authentic science in a “low-performing” urban elementary school. Journal of Research in Science Teaching, 43(7), 695–721.Google Scholar
  24. Cadogan, A. (2000). Biological nomenclature: Standard terms and expressions used in the teaching of biology (3rd ed.). London: The Institute of Biology.Google Scholar
  25. Campbell, N. A., & Reece, J. B. (2005). Biology (7th ed.). San Francisco: Pearson Education.Google Scholar
  26. Carlson, A. E. (1966). The gene. A critical history. Philadelphia: W. B. Saunders.Google Scholar
  27. Carlson, E. A. (2004). Mendel’s legacy: The origin of classical genetics. New York: Cold Spring Harbor Laboratory Press.Google Scholar
  28. Carvalho, W. (2005). Biologia em foco. São Paulo: FTD.Google Scholar
  29. Carver, R., Waldahl, R., & Breivik, J. (2008). Frame that gene: A tool for analyzing and classifying the communication of genetics to the public. EMBO Reports, 9(10), 943–947.Google Scholar
  30. Castéra, J., Bruguiére, C., Clément, P., et al. (2008a). Genetic diseases and genetic determinism models in French secondary school biology textbooks. Journal of Biological Education, 42(2), 53–59.Google Scholar
  31. Castéra, J., Clément, P., Abrougui, M., et al. (2008b). Genetic determinism in school textbooks: A comparative study among sixteen countries. Science Education International, 19(2), 163–184.Google Scholar
  32. Cheida, L. E. (2005). Biologia integrada. São Paulo: FTD.Google Scholar
  33. Chevallard, Y. (1989). On didactic transposition theory: Some introductory notes. Paper presented at the International symposium on selected domains of research and development in mathematics education, Proceedings (pp. 51–62). Bratislava, Slovakia. Retrieved October 29, 2011 from:
  34. Chinn, A. C., & Samarapungavan, A. (2008). Learning to use scientific models: Multiple dimensions of conceptual change. In R. A. Duschl & R. E. Grandy (Eds.), Teaching scientific inquiry (pp. 191–225). Rotterdam: Sense Publishers.Google Scholar
  35. Cho, H. M., Kahle, J. B., & Nordland, F. H. (1985). An investigation of high school biology textbooks as sources of misconceptions and difficulties in genetics and some suggestions for teaching genetics. Science Education, 69(5), 707–719.Google Scholar
  36. Claridge, M. F. (2010). Species are real biological entities. In F. J. Ayala & R. Arp (Eds.), Contemporary debates in philosophy of biology (pp. 91–109). Oxford: Blackwell.Google Scholar
  37. Coimbra, M. A. C., Rubio, P. C., Corazzini, R., Rodrigues, R. N. C., & Waldhelm, M. C. V. (2005). Biologia: Projeto escola e cidadania para todos. São Paulo: Editora do Brasil.Google Scholar
  38. Condit, C. M., Ferguson, A., Kassel, R., Tadhani, C., Gooding, H. C., & Parrot, R. (2001). An explanatory study of the impact of news headlines on genetic determinism. Science Communication, 22, 379–395.Google Scholar
  39. Condit, C. M., Ofulue, N., & Sheedy, K. M. (1998). Determinism and mass-media portrayals of genetics. American Journal of Human Genetics, 62, 979–984.Google Scholar
  40. Cook, M. P. (2006). Visual representations in science education: The influence of prior knowledge and cognitive load theory on instructional design principles. Science Education, 90, 1073–1091.Google Scholar
  41. Daston, L., & Galison, P. (2010). Objectivity. Brooklyn: Zone Books.Google Scholar
  42. Dawkins, R. (1982). The extended phenotype. Oxford: Oxford University Press.Google Scholar
  43. Dawkins, R. (1989). The selfish gene. Oxford: Oxford University Press.Google Scholar
  44. Develaki, M. (2007). The model-based view of scientific theories and the structuring of school science programs. Science & Education, 16(7–8), 725–749.Google Scholar
  45. Di Giuseppe, M., Vavitas, A., Ritter, B., Fraser, D., Arora, A., & Lisser, B. (2003). Nelson biology 12. Toronto: Nelson Thomson Learning.Google Scholar
  46. DiGisi, L. L., & Wilett, J. B. (1995). What high school biology teachers say about their textbook use: A descriptive study. Journal of Research in Science Teaching, 32(2), 123–142.Google Scholar
  47. Dove, A. (2009). Epigenetics: The final frontier? Science, 326(5950), 303–305.Google Scholar
  48. Duit, R., & Treagust, D. F. (2003). Learning in science: From behaviourism towards social constructivism and beyond. In B. J. Fraser & K. G. Tobin (Eds.), International handbook of science education (1st ed., pp. 3–25). Dordrech: Kluwer.Google Scholar
  49. Duncan, R. G., & Reiser, B. J. (2007). Reasoning across ontologically distinct levels: Students’ understanding of molecular genetics. Journal of Research in Science Teaching, 44(7), 938–959.Google Scholar
  50. Durant, J., Hansen, A., & Bauer, M. (1999). Public understanding of the new genetics. In T. Marteau & M. Richards (Eds.), The troubled helix: Social and psychological implications of the new human genetics (pp. 235–248). Cambridge: Cambridge University Press.Google Scholar
  51. Dutra, L. H. (2009). Introdução à teoria da ciência. Florianópolis: UFSC.Google Scholar
  52. Edling, A. (2006). Abstraction and authority in textbooks: The textual paths towards specialized language. Uppsala: Acta Universitatis Upsaliensis.Google Scholar
  53. Ekvall, U. (2001). Den styrande läroboken. In B. Melander & B. Olsson (Eds.), Verklighetens texter: Sjutton fallstudier (pp. 43–80). Lund: Studentlitteratur.Google Scholar
  54. El-Hani, C. N. (2007). Between the cross and the sword: The crisis of the gene concept. Genetics and Molecular Biology, 30(2), 297–307.Google Scholar
  55. El-Hani, C. N., Queiroz, J., & Emmeche, C. (2006). A semiotic analysis of the genetic information system. Semiotica, 160(1/4), 1–68.Google Scholar
  56. El-Hani, C. N., Queiroz, J., & Emmeche, C. (2009). Genes, information, and semiosis. Tartu: Tartu University Press (Tartu Semiotics Library).Google Scholar
  57. El-Hani, C. N., Roque, N., & Rocha, P. B. (2007). Brazilian high school biology textbooks: Results from a national program. In Proceedings of the IOSTE international meeting on critical analysis of school science textbook (pp. 505–516). Hammamet, Tunisia: University of Tunis.Google Scholar
  58. El-Hani, C. N., Roque, N., & Rocha, P. L. B. (2011). Livros didáticos de Biologia do ensino médio: Resultados do PNLEM/2007. Educação em Revista, 27(1), 211–240.Google Scholar
  59. Engström, C., Backlund, P., Berger, R., & Grennberg, H. (2008). Kemi B tema och teori (2nd ed.). Stockholm: Bonnier Utbildning.Google Scholar
  60. Evans, B., Ladiges, P., McKenzie, J., Batterham, P., & Sanders, Y. (2005a). Heinemann biology 2 (4th ed.). Melbourne: Harcourt Education.Google Scholar
  61. Evans, B., Ladiges, P., McKenzie, J., & Sanders, Y. (2005b). Heinemann biology 1 (4th ed.). Melbourne: Harcourt Education.Google Scholar
  62. Falk, R. (1986). What is a gene? Studies in History and Philosophy of Science, 17(2), 133–173.Google Scholar
  63. Faucz, F. R., & Quintilham, C. T. (2005). Biologia: Caminho da vida. Curitiba: Base.Google Scholar
  64. Favaretto, J. A., & Mercadante, C. (2005). Biologia. São Paulo: Moderna.Google Scholar
  65. Finley, F. N., Stewart, J., & Yarroch, W. L. (1982). Teachers’ perception of important and difficult science content: The report of a survey. Science Education, 66(4), 531–538.Google Scholar
  66. Fleck, L. ([1935]1979). Genesis and development of a scientific fact. Chicago: The University of Chicago Press.Google Scholar
  67. Flodin, V. (2009). The necessity of making visible concepts with multiple meanings in science education: The use of the gene concept in biology textbook. Science & Education, 18(1), 73–94.Google Scholar
  68. Fogle, T. (1990). Are genes units of inheritance? Biology and Philosophy, 5(3), 349–371.Google Scholar
  69. Frota-Pessoa, O. (2005). Biologia. São Paulo: Scipione.Google Scholar
  70. Gainotti, A., & Modelli, A. (2005). Biologia. São Paulo: Scipione.Google Scholar
  71. Gayán, E., & García, P. E. (1997). Como escoger un libro de texto? Desarrollo de un instrumento para evaluar los libros de texto de ciencias experimentales. Enseñanza de las Ciencias (Número Extra, V Congresso), pp 249–250.Google Scholar
  72. Gericke, N. M., & Hagberg, M. (2007). Definition of historical models of gene function and their relation to students’ understanding of genetics. Science & Education, 16(7–8), 849–881.Google Scholar
  73. Gericke, N. M., & Hagberg, M. (2010a). Conceptual incoherence as a result of the use of multiple historical models in school textbooks. Research in Science Education, 40(4), 605–623.Google Scholar
  74. Gericke, N. M., & Hagberg, M. (2010b). Conceptual variation in the depiction of gene function in upper secondary school textbooks. Science & Education, 19(10), 963–994.Google Scholar
  75. Gericke, N. M., Hagberg, M., & Jorde, D. (2012). Upper students’ understanding of the use of multiple models in biology textbooks: The importance of conceptual variation and incommensurability. Research in Science Education,. doi: 10.1007/s11165-012-9288-z.Google Scholar
  76. Gerstein, M. B., Bruce, C., Rozowsky, J. S., Zheng, D., Du, J., Korbel, J. O., et al. (2007). What is a gene, post-ENCODE? History and updated definition. Genome Research, 17(6), 669–681.Google Scholar
  77. Gilbert, J. K., Pietrocola, M., Zylbersztajn, A., & Franco, C. (2000). Science and education: Notions of reality, theory and model. In J. K. Gilbert & C. Boulter (Eds.), Developing models in science education (pp. 19–40). Dordrecht: Kluwer.Google Scholar
  78. Grandy, R. E. (2003). What are models and why do we need them? Science & Education, 12(8), 773–777.Google Scholar
  79. Griffis, K., Thadani, V., & Wise, J. (2008). Making authentic data accessible: The sensing the environment inquiry module. Journal of Biological Education, 42(3), 119–122.Google Scholar
  80. Griffiths, P. E., & Neumann-Held, E. (1999). The many faces of the gene. BioScience, 49(8), 656–662.Google Scholar
  81. Hackling, M., & Treagust, D. (1984). Research data necessary for meaningful review of grade ten high school genetics curricula. Journal of Research in Science Teaching, 21(2), 197–209.Google Scholar
  82. Hall, A., Reiss, M., Rowell, C., Scott, A., Codrington, S., & Newton, N. (Eds.). (2005). Salters-Nuffield advanced biology AS. Oxford: Harcourt Educational Limited.Google Scholar
  83. Hall, A., Reiss, M., Rowell, C., Scott, A., Codrington, S., & Newton, N. (Eds.). (2006). Salters-Nuffield advanced biology A2. Oxford: Harcourt Educational Limited.Google Scholar
  84. Halldén, O. (1990). Questions asked in common sense contexts and in scientific contexts. In P. L. Lijnse, P. Licht, W. de Vos, & A. J. Waarlo (Eds.), Relating macroscopic phenomena to microscopic particles (pp. 119–130). Utrecht: CD-β Press.Google Scholar
  85. Halloun, I. A. (2004). Modeling theory in science education. Dordrecht: Kluwer.Google Scholar
  86. Halloun, I. A. (2007). Mediated modeling in science education. Science & Education, 16, 653–697.Google Scholar
  87. Henriksson, A. (2005). Kemi kurs B. Malmö: Gleerups Förlag.Google Scholar
  88. Henriksson, A. (2007a). Biologi kurs A (2nd ed.). Malmö: Gleerups Förlag’.Google Scholar
  89. Henriksson, A. (2007b). Biologi kurs B (2nd ed.). Malmö: Gleerups Förlag.Google Scholar
  90. Hesse, M. B. (1963). Models and analogies in science. London: Seed and Ward.Google Scholar
  91. Joaquim, L. M. (2009). Gene: Questões epistemológicas, conceitos relacionados e visões de estudantes de graduação. Salvador-BA: Graduate Studies Program in History, Philosophy, and Science Teaching (UFBA/UEFS).Google Scholar
  92. Johnsen, E. G. (1993). Textbooks in the kaleidoscope: A critical survey of literature and research on educational texts. Oslo: Scandinavian University Press.Google Scholar
  93. Johnstone, A. H., & Mahmoud, N. A. (1980). Isolating topics of high perceived difficulty in school biology. Journal of Biological Education, 14(2), 163–166.Google Scholar
  94. Juhlin Svensson, A.-C. (2000). Nya redskap för lärandeStudier av lärares val och användning av läromedel i gymnasieskolan. Studies in Educational Sciences 23. Stockholm: HLS Förlag.Google Scholar
  95. Justi, R. S., & Gilbert, J. K. (1999). A cause of ahistorical science teaching: Use of hybrid models. Science Education, 83(2), 163–177.Google Scholar
  96. Justi, R. S., & Gilbert, J. K. (2000). History and philosophy of science through models: Some challenges in the case of “the atom”. International Journal of Science Education, 22(9), 993–1009.Google Scholar
  97. Justi, R. S., & Gilbert, J. K. (2003). Teachers’ views on the nature of models. International Journal of Science Education, 25(11), 1369–1386.Google Scholar
  98. Karlsson, J., Krigsman, T., Molander, B.-O., & Wickman, P.-O. (2007). Biologi A med naturkunskap (3rd ed.). Stockholm: Liber AB.Google Scholar
  99. Karlsson, J., Molander, B.-O., & Wickman, P.-O. (2008). Biologi B (3rd ed.). Stockholm: Liber AB.Google Scholar
  100. Kay, L. E. (2000). Who wrote the book of life? A history of the genetic code. Stanford: Stanford University Press.Google Scholar
  101. Keller, E. F. (2000). The century of the gene. Cambridge: Harvard University Press.Google Scholar
  102. Keller, E. F. (2005). The century beyond the gene. Journal of Biosciences, 30(1), 3–10.Google Scholar
  103. Kendler, K. S. (2005). “A gene for…”: The nature of gene action in psychiatric disorders. American Journal of Psychiatry, 162, 1243–1252.Google Scholar
  104. Kincaid, H. (1990). Molecular biology and the unity of science. Philosophy of Science, 57, 575–593.Google Scholar
  105. Kitcher, P. (1982). Genes. British Journal for the Philosophy of Science, 33(4), 337–359.Google Scholar
  106. Knain, E. (2001). Ideologies in school science textbooks. International Journal of Science Education, 23(3), 319–329.Google Scholar
  107. Knight, R. (2007). Reports of the death of the gene are greatly exaggerated. Biology and Philosophy, 22, 293–306.Google Scholar
  108. Knippels, M. C. P. J. (2002). Coping with the abstract and complex nature of genetics in biology education: The yo–yo learning and teaching strategy. Utrecht: CD-β Press.Google Scholar
  109. Lambert, D. (1999). Exploring the use of textbooks in Key Stage 3 geography classrooms: A small-scale study. The Curriculum Journal, 10(1), 85–105.Google Scholar
  110. Laurence, J. (2005). Biologia. São Paulo: Nova Geração.Google Scholar
  111. Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. New York: Cambridge University Press.Google Scholar
  112. Leonard, W. H., & Penick, J. E. (2003). Biology: A community in context. New York: Glencoe McGraw-Hill.Google Scholar
  113. Lewis, J. (2000). Genes, chromosomes, cell division and inheritance: Do students see any relationship? International Journal of Science Education, 22(2), 177–195.Google Scholar
  114. Lewis, J., & Kattmann, U. (2004). Traits, genes, particles and information: Re-visiting students’ understandings of genetics. International Journal of Science Education, 26(2), 195–206.Google Scholar
  115. Lewis, J., Leach, J., & Wood-Robinson, C. (2000). All in the genes? Young people’s understanding of the nature of genes. Journal of Biological Education, 34(2), 74–79.Google Scholar
  116. Lewontin, R. C., Rose, S., & Kamin, L. J. (1984). Not in our genes: Biology, ideology, and human nature. New York: Pantheon.Google Scholar
  117. Linhares, S., & Gewandsznajder, F. (2005). Biologia. São Paulo: Ática.Google Scholar
  118. Ljunggren, L., Söderberg, B., & Ahlin, S. (2006). Liv i utveckling B: Biologi gymnasieskolan (2nd ed.). Stockholm: Natur och Kultur.Google Scholar
  119. Ljunggren, L., Söderberg, B., & Ahlin, S. (2007). Liv i utveckling A: Biologi gymnasieskolan (2nd ed.). Stockholm: Natur och Kultur.Google Scholar
  120. Lopes, S., & Rosso, S. (2005). Biologia. São Paulo: Saraiva.Google Scholar
  121. Lüning, B., Nordlund, S., Norrby, L.-J., & Peterson, A. (2009). Modell och verklighet B (2nd ed.). Stockholm: Natur och Kultur.Google Scholar
  122. Machado, S. W. S. (2005). Biologia. São Paulo: Scipione.Google Scholar
  123. Marbach-Ad, G. (2001). Attempting to break the code in student comprehension of genetic concepts. Journal of Biological Education, 35(4), 183–189.Google Scholar
  124. Marbach-Ad, G., & Stavy, R. (2000). Students’ cellular and molecular explanations of genetic phenomena. Journal of Biological Education, 34(4), 200–205.Google Scholar
  125. Martinez-Gracia, M. V., Gil-Quilez, M. J., & Osada, J. (2006). Analysis of molecular genetics content in Spanish secondary school textbooks. Journal of Biological education, 40(2), 53–60.Google Scholar
  126. Matthews, M. R. (1994). Science teaching: The role of history and philosophy of science. New York: Routledge.Google Scholar
  127. Matthews, M. R. (2007). Models in science and science education: An introduction. Science & Education, 16(7–8), 647–652.Google Scholar
  128. Mayr, E. (1982). The growth of biological thought: Diversity, evolution and inheritance. Cambridge: The Belknap Press of Harvard University Press.Google Scholar
  129. Mayr, E. (1997). This is biology: The science of the living world. Cambridge: The Belknap Press of Harvard University Press.Google Scholar
  130. Mbajiorgu, N. M., Ezechi, N. G., & Idoko, E. C. (2007). Addressing non-scientific presuppositions in genetics using a conceptual change strategy. Science Education, 91(3), 419–438.Google Scholar
  131. Meyer, L. M. N., Bomfim, G. C., & El-Hani, C. N. (2011). How to understand the gene in the twenty first century. Science & Education. doi: 10.1007/s11191-011-9390-z.
  132. Mishler, B. D. (2010). Species are not uniquely real biological entities. In F. J. Ayala & R. Arp (Eds.), Contemporary debates in philosophy of biology (pp. 110–122). Oxford: Blackwell.Google Scholar
  133. Monk, M., & Osborne, J. (1997). Placing the history and philosophy of science on the curriculum: A model for the development of pedagogy. Science Education, 81, 405–424.Google Scholar
  134. Moody, D. E. (2000). The paradox of the textbook. In K. M. Fisher, J. H. Wandersee, & D. E. Moody (Eds.), Mapping biology knowledge (pp. 167–184). Dordrecht: Kluwer.Google Scholar
  135. Morandini, C., & Bellinello, L. C. (2005). Biologia. São Paulo: Atual.Google Scholar
  136. Mortimer, E. F., & Scott, P. H. (2003). Meaning making in secondary science classrooms. Maidenhead: Open University Press.Google Scholar
  137. Moss, L. (2001). Deconstructing the gene and reconstructing molecular developmental systems. In S. Oyama, P. Griffiths, & R. Gray (Eds.), Cycles of contingency: Developmental systems and evolution (pp. 85–97). Cambridge: MIT Press.Google Scholar
  138. Moss, L. (2003). What genes can’t do. Cambridge: MIT Press.Google Scholar
  139. Nelkin, D., & Lindee, S. M. (1995). The DNA mystique: The gene as a cultural icon. New York: Freeman.Google Scholar
  140. Neuendorf, K. A. (2002). The content analysis guidebook. Thousand Oaks: Sage.Google Scholar
  141. Neumann-Held, E. (1999). The gene is dead–long live the gene: Conceptualizing genes the constructionist way. In P. Koslowski (Ed.), Sociobiology and bioeconomics: The theory of evolution in biological and economic thinking (pp. 105–137). Berlin: Springer.Google Scholar
  142. Newmann, F. M., Bryk, A. S., & Nagaoka, J. K. (2001). Authentic intellectual work and standardized tests: Conflict or coexistence? Chicago: Consortium on Chicago School Research.Google Scholar
  143. Paulino, W. R. (2005). Biologia. São Paulo: Ática.Google Scholar
  144. Peinerud, I.-L., Lager-Nyqvist, L., & Lundegård, I. (2003). Biologi B (3rd ed.). Stockholm: Bonnier utbildning AB.Google Scholar
  145. Peinerud, I.-L., Lager-Nyqvist, L., & Lundegård, I. (2006). Biologi A (3rd ed.). Stockholm: Bonnier utbildning AB.Google Scholar
  146. Portin, P. (1993). The concept of the gene: Short history and present status. Quarterly Review of Biology, 56, 173–223.Google Scholar
  147. Rheinberger, H.-J. (2000). Gene concepts: Fragments from the perspective of molecular biology. In P. Beurton, R. Falk, & H.-J. Rheinberger (Eds.), The concept of the gene in development and evolution (pp. 219–239). Cambridge: Cambridge University Press.Google Scholar
  148. Richards, M. P., & Ponder, M. (1996). Lay understanding of genetics: A test of hypothesis. Journal of Medical Genetics, 33(12), 1032–1036.Google Scholar
  149. Ritter, B., Adam-Carr, C., & Fraser, D. (2002). Nelson biology 11. Toronto: Nelson Thomson Learning.Google Scholar
  150. Rosenberg, A. (1985). The structure of biological science. Cambridge: Cambridge University Press.Google Scholar
  151. Roth, W.-M. (1995). Authentic school science. Dordrecht: Kluwer.Google Scholar
  152. Sadler, T. D. (2011). Foreword. In T. D. Sadler (Ed.), Socio-scientific issues in the classroom: Teaching, learning and research. Dordrecht: Springer.Google Scholar
  153. Sadler, T. D., & Zeidler, D. L. (2004). The morality of socioscientific issues: Construal and resolution of genetic engineering dilemmas. Science Education, 88(1), 4–27.Google Scholar
  154. Sadler, T. D., & Zeidler, D. L. (2005). The significance of content knowledge for informal reasoning regarding socioscientific issues: Applying genetics knowledge to genetic engineering issues. Science Education, 89(1), 71–93.Google Scholar
  155. Sánchez Arteaga, J. M., & El-Hani, C. N. (2012). Othering processes and STS curricula: From 19th century scientific discourse on interracial competition and racial extinction to othering in biomedical technosciences. Science & Education, 21(5), 607–629.Google Scholar
  156. Santos, V. C., & El-Hani, C. N. (2009). Idéias sobre genes em livros didáticos de biologia do ensino médio publicados no Brasil. Revista Brasileira de Pesquisa em Educação em Ciências, 9(1), a6.Google Scholar
  157. Santos, V. C., Joaquim, L. M., & El-Hani, C. N. (2012). Hybrid deterministic views about genes in biology textbooks: A key problem in genetics teaching. Science & Education, 21(4), 543–578.Google Scholar
  158. Scherrer, K., & Jost, J. (2007a). The gene and the genon concept: A functional and information-theoretic analysis. Molecular System Biology, 3(1), 1–11.Google Scholar
  159. Scherrer, K., & Jost, J. (2007b). The gene and the genon concept: Coding versus regulation. A conceptual and information-theoretic analysis storage and expression in the light of modern molecular biology. Theory in Biosciences, 126(2–3), 65–113.Google Scholar
  160. Schwab, J. (1964). Structure of the disciplines: Meaning & significances. In G. W. Ford & L. Pugno (Eds.), The structure of knowledge & the curriculum. Chicago: Rand, McNally & Co.Google Scholar
  161. Shymansky, J. A., Yore, L. D., & Good, R. (1991). Elementary school teachers’ beliefs about and perceptions of elementary school science, science reading, science textbooks, and supportive instructional factors. Journal of Research in Science Teaching, 28, 437–454.Google Scholar
  162. Silva-Júnior, C., & Sasson, S. (2005). Biologia. São Paulo: Saraiva.Google Scholar
  163. Sjøberg, S. (1998). Naturfag som allmenndannelse: En kritisk fagdidaktikk. Oslo: Gyldendal.Google Scholar
  164. Smith, A. L., & Williams, M. J. (2007). “It’s the X and Y thing”: Cross-sectional and longitudinal changes in children’s understanding of genes. Research in Science Education, 37(4), 407–422.Google Scholar
  165. Smolicz, J. J., & Nunan, E. E. (1975). The philosophical and sociological foundations of science education: The demythologizing of school science. Studies in Science Education, 2(1), 101–143.Google Scholar
  166. Stewart, J., Hafner, R., & Dale, M. (1990). Students’ alternative views of meiosis. The American Biology Teacher, 52(4), 228–232.Google Scholar
  167. Stotz, K., Griffiths, P. E., & Knight, R. (2004). How biologists conceptualize genes: An empirical study. Studies in the History and Philosophy of Biological and Biomedical Sciences, 35, 647–673.Google Scholar
  168. Suppe, F. (1977). The structure of scientific theories. Urbana: University of Illinois Press.Google Scholar
  169. The Swedish National Agency for Education (2011). Steering documents: Programme objectives: The aims, the structure and nature of the Natural Science Programme for upper secondary school in Sweden. Retrieved October 19, 2011, from:
  170. Tolman, R. (1982). Difficulties in genetics problem solving. The American Biology Teacher, 44(9), 525–527.Google Scholar
  171. Tytler, R., Symington, D., Kirkwood, V., & Malcolm, C. (2008). Engaging students in authentic science through school–community links: Learning from the rural experience. Teaching Science, 54(3), 13–18.Google Scholar
  172. Van Driel, J. H., & Verloop, N. (1999). Teachers’ knowledge of models and modelling in science. International Journal of Science Education, 21(11), 1141–1153.Google Scholar
  173. Van Eijick, M., & Roth, W.-M. (2009). Authentic science experiences as a vehicle to change students’ orientations toward science and scientific career choices: Learning from the path followed by Brad. Cultural Studies of Science Education, 4, 611–638.Google Scholar
  174. Van Fraassen, B. (1980). The scientific image. Oxford: Clarendon Press.Google Scholar
  175. Venville, G. J., & Treagust, D. F. (1998). Exploring conceptual change in genetics using a multidimensional interpretive framework. Journal of Research in Science Teaching, 35(9), 1031–1055.Google Scholar
  176. Weber, M. (2004) Walking on the chromosome: Drosophila and the molecularization of development. In J. P. Gaudilliére, & H.-J.Rheinberger (Eds.), From molecular genetics to genomics: The mapping cultures of twentieth-century genetics (pp. 63–78). London, New York: Routledge.Google Scholar
  177. Wenger, E. (1998). Communities of practice: Learning, meaning, and identity. New York: Cambridge University Press.Google Scholar
  178. Wennberg, G. (1990). Geografi och skolgeografi; ett ämnes förändringar. Uppsala, Sweden: Acta Universitatis Upsaliensis, Uppsala Studies in Education.Google Scholar
  179. Wikman, T. (2004). På spaning efter den goda läroboken: Om pedagogiska texters lärande potential. Turku: Åbo Akademis förlag.Google Scholar
  180. Williams, G. C. (1966). Adaptation and natural selection. Princeton: Princeton University Press.Google Scholar
  181. Wood-Robinson, C. (1994). Young people’s ideas about inheritance and evolution. Studies in Science Education, 24(1), 29–47.Google Scholar
  182. Wood-Robinson, C., Lewis, J., & Leach, J. (2000). Young people’s understanding of the nature of genetic information in the cells of an organism. Journal of Biological Education, 35(1), 29–35.Google Scholar
  183. Yore, L. D. (1991). Secondary science teachers’ attitudes toward and beliefs about science reading and science textbooks. Journal of Research in Science Teaching, 28, 55–72.Google Scholar
  184. Zwart, H. (2008). Understanding the human genome project: A biographical approach. New Genetics & Society, 27(4), 353–376.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Niklas M. Gericke
    • 1
    Email author
  • Mariana Hagberg
    • 1
  • Vanessa Carvalho dos Santos
    • 2
    • 3
  • Leyla Mariane Joaquim
    • 2
  • Charbel N. El-Hani
    • 2
  1. 1.Department of BiologyKarlstad UniversityKarlstadSweden
  2. 2.History, Philosophy, and Biology Teaching Laboratory, Institute of BiologyFederal University of BahiaSalvadorBrazil
  3. 3.State University of ParaíbaJoão PessoaBrazil

Personalised recommendations