Skip to main content
Log in

Conceptual Variation in the Depiction of Gene Function in Upper Secondary School Textbooks

  • Published:
Science & Education Aims and scope Submit manuscript

Abstract

This paper explores conceptual variation in the depiction of gene function in upper secondary school textbooks. Historically, concepts in genetics have developed in various scientific frameworks, which has led to a level of incommensurability as concepts have changed over time within their respective frameworks. Since students may have difficulties in understanding concepts where there is implicit variation in descriptions of the same phenomena, we have developed a concept mapping instrument and applied it to study the gene function concepts in biology and chemistry textbooks that are widely used in Sweden, and others used in a selection of English speaking countries. The data were then further examined using content analysis. In the present paper we describe the conceptual variation of gene function as it is presented in the textbooks, and analyze the ways in which students’ understanding may be influenced. We conclude that it may be difficult for students to gain a modern, process-oriented understanding of gene function if textbooks are used as foundations for the planning and execution of lessons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abrougui, M., & Clément, P. (1997). Human genetics in French and Tunisian secondary textbooks: Presentation of a textbook analysis method. In H. Bayerhuber & F. Brinkman (Eds.), What—Why—How? Research in didaktik of biology (pp. 103–114). Germany: IPN–Materialen, Kiel.

    Google Scholar 

  • American Association for the Advancement of Science. (2008). AAAS Project 2061 high school biology textbooks evaluation. http://www.project2061.org/publications/textbook/hsbio/summary/default.htm. Accessed November 23, 2008.

  • Bahar, M., Johnstone, A. H., & Hansell, M. H. (1999). Revisiting learning difficulties in biology. Journal of Biological Education, 33(2), 84–86.

    Google Scholar 

  • Cadogan, A. (2000). Biological nomenclature—standard terms and expressions used in the teaching of biology (3rd ed.). London: The Institute of Biology.

    Google Scholar 

  • Campell, N. A., & Reece, J. B. (2005). Biology (7th ed.). San Francisco: Pearson education Inc.

    Google Scholar 

  • Carlson, E. A. (2004). Mendel’s legacy: The origin of classical genetics. New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Castéra, J., Bruguiére, C., Clément, P., et al. (2008a). Genetic diseases and genetic determinism models in French secondary school biology textbooks. Journal of Biological Education, 42(2), 53–59.

    Google Scholar 

  • Castéra, J., Clément, P., Abrougui, M., et al. (2008b). Genetic determinism in school textbooks: A comparative study among sixteen countries. Science Education International, 19(2), 163–184.

    Google Scholar 

  • Chall, J. S., & Conrad, S. (1991). Should textbooks challenge students? The case for easier or harder books. New York: Teachers College Press.

    Google Scholar 

  • Chinn, A. C., & Samarapungavan, A. (2008). Learning to use scientific models: Multiple dimensions of conceptual change. In R. A. Duschl & R. E. Grandy (Eds.), Teaching scientific inquiry (pp. 191–225). Roterdam: Sense.

    Google Scholar 

  • Dawkins, R. (1989). The selfish gene. Oxford: Oxford University Press.

    Google Scholar 

  • DiGisi, L. L., & Wilett, J. B. (1995). What high school biology teachers say about their textbook use: A descriptive study. Journal of Research in Science Teaching, 32(2), 123–142.

    Article  Google Scholar 

  • Dove, A. (2009). Epigenetics: The final frontier? Science, 326(5950), 303–305.

    Article  Google Scholar 

  • Duncan, R. G., & Reiser, B. J. (2007). Reasoning across ontologically distinct levels: Students’ understanding of molecular genetics. Journal of Research in Science Teaching, 44(7), 938–959.

    Article  Google Scholar 

  • Duschl, R. A. (1990). Restructuring science education: The importance of theories and their development. New York: Teachers Collage Press.

    Google Scholar 

  • Duschl, R. A. (2008). Science education in Three-Part Harmony: Balancing conceptual, epistemic and social learning goals. In G. Kelly, A. Luke, & J. Green (Eds.), Review of research in education—What counts as knowledge in educational settings: Disciplinary knowledge, assessment, and curriculum. V 32. Washington, DC: American Educational Research Association.

    Google Scholar 

  • Edling, A. (2006). Abstraction and authority in textbooks: The textual paths towards specialized language. Uppsala: Acta Universitatis Upsaliensis.

    Google Scholar 

  • Ekvall, U. (2001). Den styrande läroboken. In B. Melander & B. Olsson (Eds.), Verklighetens texter: Sjutton fallstudier (pp. 43–80). Lund: Studentlitteratur.

    Google Scholar 

  • El-Hani, C. N. (2007). Between the cross and the sword: The crisis of the gene concept. Genetics and Molecular Biology, 30(2), 297–307.

    Article  Google Scholar 

  • Falk, R. (2000). The gene—A concept in tension. In P. Beurton, R. Falk, & H. J. Rheinberger (Eds.), The concept of the gene in development and evolution: Historical and epistemological perspectives (pp. 317–348). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Fields, S. (2001). Proteomics in genomeland. Science, 291(5507), 1221–1223.

    Article  Google Scholar 

  • Flodin, V. (2009). The necessity of making visible concepts with multiple meanings in science education: The use of gene concept in a biology textbook. Science & Education, 18(1), 73–94.

    Article  Google Scholar 

  • Fogle, T. (2000). The dissolution of protein coding genes in molecular biology. In P. Beurton, R. Falk, & H. J. Rheinberger (Eds.), The concept of the gene in development and evolution: Historical and epistemological perspectives (pp. 3–25). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Forissier, T., & Clément, P. (2003). Teaching ‘biological identity’ as genome/environment interactions. Journal of Biological Education, 37(2), 85–90.

    Google Scholar 

  • Fox Keller, E. (2000). The century of the gene. Cambridge: Harvard University Press.

    Google Scholar 

  • Gericke, N., & Drechsler, M. (2006). Are biology and chemistry models used from a ‘nature of science’ perspective? An analysis of Swedish textbooks. Paper presented at the 12th IOSTE (International Organization for Science and Technology Education) symposium, proceedings, pp. 353–358, Penang, Malaysia.

  • Gericke, N. M., & Hagberg, M. (2007). Definition of historical models of gene function and their relation to students’ understanding of genetics. Science & Education, 16(7–8), 849–881.

    Article  Google Scholar 

  • Gericke, N. M., & Hagberg, M. (2009). Conceptual incoherence as a result of the use of multiple historical models in school textbooks. Research in Science Education. doi:10.1007/s11165-009-9136-y.

  • Gerstein, M. B., Bruce, B., Rozowsky, J. S., et al. (2007). What is a gene, post-ENCODE? History and updated definition. Genome Research, 17, 669–681.

    Article  Google Scholar 

  • Gifford, F. (2000). Gene concepts and genetic concepts. In P. Beurton, R. Falk, & H. J. Rheinberger (Eds.), The concept of the gene in development and evolution: Historical and epistemological perspectives (pp. 40–66). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Gilbert, J. K., Boulter, C., & Rutherford, M. (1998). Models in explanations, part 1: Horses for courses? International Journal of Science Education, 20(1), 83–97.

    Article  Google Scholar 

  • Griffiths, P. E., & Neumann-Held, E. N. (1999). The many faces of the gene. BioScience, 49, 656–662.

    Article  Google Scholar 

  • Halldén, O. (1990). Questions asked in common sense contexts and in scientific contexts. In P. L. Lijnse, P. Licht, W. de Vos, & A. J. Waarlo (Eds.), Relating macroscopic phenomena to microscopic particles (pp. 119–130). Utrecht: CD-β Press.

    Google Scholar 

  • Halloun, I. A. (2004). Modeling theory in science education. Dordrecht: Kluwer.

    Google Scholar 

  • Halloun, I. A. (2007). Mediated modeling in science education. Science Education, 16(7–8), 653–697.

    Google Scholar 

  • Johnsen, E. G. (1993). Textbooks in the Kaleidoscope: A critical survey of literature and research on educational texts. Oslo: Scandinavian University Press.

    Google Scholar 

  • Johnstone, A. H., & Mahmoud, N. A. (1980). Isolating topics of high perceived difficulty in school biology. Journal of Biological Education, 14(2), 163–166.

    Google Scholar 

  • Justi, R. S., & Gilbert, J. K. (1999). A cause of historical science teaching: Use of hybrid models. Science Education, 83(2), 163–177.

    Article  Google Scholar 

  • Justi, R. S., & Gilbert, J. K. (2003). Teachers’ views on the nature of models. International Journal of Science Education, 25(11), 1369–1386.

    Article  Google Scholar 

  • Karvonen, P. (1995). Oppikirjateksti toimintana. Helsinki: Suomalaisen kirjallisuuden seura.

    Google Scholar 

  • Kincaid, H. (1990). Molecular biology and the unity of science. Philosophy of Science, 57, 575–593.

    Article  Google Scholar 

  • Kitcher, P. (1982). Genes. The British Journal for the Philosophy of Science, 33(4), 337–359.

    Article  Google Scholar 

  • Knain, E. (2001). Ideologies in school science textbooks. International Journal of Science Education, 23(3), 319–329.

    Article  Google Scholar 

  • Knippels, M. C. P. J. (2002). Coping with the abstract and complex nature of genetics in biology education—The yo-yo learning and teaching strategy. Utrecht: CD-β Press.

    Google Scholar 

  • Lewis, J., & Kattmann, U. (2004). Traits, genes, particles and information: Re-visiting students’ understandings of genetics. International Journal of Science Education, 26(2), 195–206.

    Article  Google Scholar 

  • Lewis, J., Leach, J., & Wood-Robinson, C. (2000a). All in the genes?—Young people’s understanding of the nature of genes. Journal of Biological Education, 34(2), 74–79.

    Google Scholar 

  • Lewis, J., Leach, J., & Wood-Robinson, C. (2000b). Chromosomes: The missing link—Young people’s understanding of mitosis, meiosis, and fertilisation. Journal of Biological Education, 34(4), 189–199.

    Google Scholar 

  • Lewis, J., & Wood-Robinson, C. (2000). Genes, chromosomes, cell division and inheritance—Do students see any relationship. International Journal of Science Education, 22(2), 177–195.

    Article  Google Scholar 

  • Lewontin, R. (2000). The triple helix: Gene, organism, and environment. USA: Harvard University Press.

    Google Scholar 

  • Marbach-Ad, G. (2001). Attempting to break the code in student comprehension of genetic concepts. Journal of Biological Education, 35(4), 183–189.

    Google Scholar 

  • Marbach-Ad, G., & Stavy, R. (2000). Students’ cellular and molecular explanations of genetic phenomena. Journal of Biological Education, 34(4), 200–205.

    Google Scholar 

  • Martinez-Gracia, M. V., Gil-Quilez, M. J., & Osada, J. (2006). Analysis of molecular genetics content in Spanish secondary school textbooks. Journal of Biological Education, 40(2), 53–60.

    Google Scholar 

  • Martins, I., & Ogborn, J. (1997). Metaphorical reasoning about genetics. International Journal of Science Education, 19(1), 47–63.

    Article  Google Scholar 

  • Mayr, E. (1982). The growth of biological thought: Diversity, evolution and inheritance. Cambridge, MA: The Belknap Press of Harvard University Press.

    Google Scholar 

  • Mayr, E. (1997). This is biology: The science of the living world. Cambridge, MA: The Belknap Press of Harvard University Press.

    Google Scholar 

  • Moody, D. E. (2000). The paradox of the textbook. In K. M. Fisher, J. H. Wandersee, & D. E. Moody (Eds.), Mapping biology knowledge (pp. 167–184). Dordrecht: Kluwer.

    Google Scholar 

  • Neuendorf, K. A. (2002). The content analysis guidebook. Thousand Oaks, CA: Sage.

    Google Scholar 

  • Palmquist, M. E., Carley, K. M., & Dale, T. A. (1997). Two applications of automated text analysis: Analyzing literary and non-literary texts. In C. Roberts (Ed.), Text analysis for the social sciences: Methods for drawing statistical inferences from texts and transcripts. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Pashley, M. (1994). A-level students: Their problem with gene and allele. Journal of Biological Education, 28(2), 120–126.

    Google Scholar 

  • Ringo, J. (2004). Fundamental genetics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Rosenberg, A. (1985). The structure of biological science. Cambridge: Cambridge University Press.

    Google Scholar 

  • Sankey, H., & Hoyningen-Huene, P. (2001). In P. Hoyningen-Huene & H. Sankey (Eds.), The introduction to: Incommensurability and related matters. Boston studies in the philosophy of science, No. 216. Dordrecht: Kluwer.

  • Sarkar, S. (1999). From reaktionsnorm to the adaptive norm: The norm of reaction, 1909–1960. Biology and Philosophy, 14, 235–252.

    Article  Google Scholar 

  • Schwartz, S. (2000). The differential concept of the gene: Past and present. In P. Beurton, R. Falk, & H. J. Rheinberger (Eds.), The concept of the gene in development and evolution: Historical and epistemological perspectives (pp. 24–40). Cambridge: Cambridge University Press.

    Google Scholar 

  • Smith, A. L., & Williams, M. J. (2007). “It’s the X and Y Thing”: Cross-sectional and longitudinal changes in children’s understanding of genes. Research in Science Education, 37(4), 407–422.

    Article  Google Scholar 

  • Van Driel, J. H., & Verloop, N. (1999). Teachers’ knowledge of models and modelling in science. International Journal of Science Education, 21(11), 1141–1153.

    Article  Google Scholar 

  • Venville, G. J., Gribble, S. J., & Donovan, J. (2005). An exploration of young children’s understanding of genetics concepts from ontological and epistemological perspectives. Science Education, 89(4), 614–633.

    Article  Google Scholar 

  • Venville, G. J., & Treagust, D. F. (1998). Exploring conceptual change in genetics using a multidimensional interpretive framework. Journal of Research in Science Teaching, 35(9), 1031–1055.

    Article  Google Scholar 

  • Wandersee, J. H. (2000). Using concept maps as a knowledge mapping tool. In K. M. Fisher, J. H. Wandersee, & D. E. Moody (Eds.), Mapping biology knowledge (pp. 127–142). Dordrecht: Kluwer.

    Google Scholar 

  • Wikman, T. (2004). På spaning efter den goda läroboken: Om pedagogiska texters lärande potential. Turku: Åbo Akademis förlag.

    Google Scholar 

  • Williams, G. C. (1966). Adaption & natural selection. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Wood-Robinson, C. (1994). Young people’s ideas about inheritance and evolution. Studies in Science Education, 24, 29–47.

    Article  Google Scholar 

  • Wood-Robinson, C., Lewis, J., & Leach, J. (2000). Young peoples understanding of genetic information in the cells of an organism. Journal of Biological Education, 35(1), 29–35.

    Google Scholar 

Textbooks Used in the Study

  • Andersson, S., Sonesson, A., Stålhandske, B., Tullberg, A., & Rydén, L. (2007). Gymnasiekemi B. Stockholm: Liber AB.

    Google Scholar 

  • Borén, B., Larsson, M., Lif, L., Lillieborg, S., & Lindh, B. (2004). Kemiboken B (3rd ed.). Stockholm: Liber AB.

    Google Scholar 

  • Di Giuseppe, M., Vavitas, A., Ritter, B., Fraser, D., Arora, A., & Lisser, B. (2003). Nelson biology 12. Toronto: Nelson Thomson Learning.

    Google Scholar 

  • Engström, C., Backlund, P., Berger, R., & Grennberg, H. (2008). Kemi B tema och teori (2nd ed.). Stockholm: Bonnier Utbildning.

    Google Scholar 

  • Evans, B., Ladiges, P., McKenzie, J., Batterham, P., & Sanders, Y. (2005a). Heinemann biology 2 (4th ed.). Melbourne: Harcourt Education.

    Google Scholar 

  • Evans, B., Ladiges, P., McKenzie, J., & Sanders, Y. (2005b). Heinemann biology 1 (4th ed.). Melbourne: Harcourt Education.

    Google Scholar 

  • Hall, A., Reiss, M., Rowell, C., Scott, A., Codrington, S., & Newton, N. (Eds.). (2005). Salters-Nuffield advanced biology AS. Oxford: Harcourt Educational Limited.

    Google Scholar 

  • Hall, A., Reiss, M., Rowell, C., Scott, A., Codrington, S., & Newton, N. (Eds.). (2006). Salters-Nuffield advanced biology A2. Oxford: Harcourt Educational Limited.

    Google Scholar 

  • Henriksson, A. (2007a). Biologi kurs A (2nd ed.). Malmö: Gleerups Förlag.

    Google Scholar 

  • Henriksson, A. (2007b). Biologi kurs B (2nd ed.). Malmö: Gleerups Förlag.

    Google Scholar 

  • Henriksson, A. (2005). Kemi kurs B. Malmö: Gleerups Förlag.

    Google Scholar 

  • Karlsson, J., Krigsman, T., Molander, B.-O., & Wickman, P.-O. (2007). Biologi A med naturkunskap (3rd ed.). Stockholm: Liber AB.

    Google Scholar 

  • Karlsson, J., Molander, B.-O., & Wickman, P.-O. (2008). Biologi B (3rd ed.). Stockholm: Liber AB.

    Google Scholar 

  • Leonard, W. H., & Penick, J. E. (2003). Biology a community in context. New York, NY: Glencoe McGraw-Hill.

    Google Scholar 

  • Ljunggren, L., Söderberg, B., & Åhlin, S. (2006). Liv i utveckling B: Biologi gymnasieskolan (2nd ed.). Stockholm: Natur och Kultur.

    Google Scholar 

  • Ljunggren, L., Söderberg, B., & Åhlin, S. (2007). Liv i utveckling A: Biologi gymnasieskolan (2nd ed.). Stockholm: Natur och Kultur.

    Google Scholar 

  • Lüning, B., Nordlund, S., Norrby, L.-J., & Peterson, A. (2009). Modell och verklighet B (2nd ed.). Stockholm: Natur och Kultur.

    Google Scholar 

  • Peinerud, I.-L., Lager-Nyqvist, L., & Lundegård, I. (2003). Biologi B (3rd ed.). Stockholm: Bonnier utbildning AB.

    Google Scholar 

  • Peinerud, I.-L., Lager-Nyqvist, L., & Lundegård, I. (2006). Biologi A (3rd ed.). Stockholm: Bonnier utbildning AB.

    Google Scholar 

  • Ritter, B., Adam-Carr, C., & Fraser, D. (2002). Nelson biology 11. Toronto: Nelson Thomson Learning.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niklas Markus Gericke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gericke, N.M., Hagberg, M. Conceptual Variation in the Depiction of Gene Function in Upper Secondary School Textbooks. Sci & Educ 19, 963–994 (2010). https://doi.org/10.1007/s11191-010-9262-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-010-9262-y

Keywords

Navigation