Skip to main content
Log in

Quantum chemical studies of azoles 10. Transition states in the routes of electrophilic substitution in 1H-tetrazole via the elimination—addition mechanism without preliminary formation of N-protonated azolium salts

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The results of theoretical search for model transition states of electrophilic substitution in 1H-tetrazole (1) without preceding formation of N-protonated azolium salts are presented. Two routes of the reaction were proposed: A, attack of molecule 1 by the nucleophile HO(aq)) to form the anion to which the electrophile H3O+(aq)) is added further; and B, attack of molecule 1 by the same electrophile with the subsequent addition of the same nucleophile to the specifically solvated protonated species. The thermodynamic parameters were calculated earlier at the indicated routes. In this article, the kinetic characteristics of the reactions were estimated by the DFT/B3LYP/6-31G(d) method using the scanning pro-cedure of the potential energy surface. Both steps of route A turned out to be barrier-less, while in route B only its first step is barrier-less and the second step is conjugated with surmounting an activation barrier of ~35 kcal mol–1 between the formed prereaction complex and the products of electrophilic substitution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. I. Belen´kii, A. N. Subbotin, N. D. Chuvylkin, Russ. Chem. Bull. (Int. Ed.), 2016, 65, 2578 [Izv. Akad. Nauk, Ser. Khim., 2016, 2578].

    Article  Google Scholar 

  2. V. P. Ananikov, E. A. Khokhlova, M. P. Egorov, A. M. Sakharov, S. G. Zlotin, A. V. Kucherov, L. M. Kustov, M. L. Gening, N. E. Nifantiev, Mendeleev Commun., 2015, 25, 75.

    Article  CAS  Google Scholar 

  3. C.-J. Cheng, X. Z. Zhang, L. W. Chung, L. Xu, Y.-D. Wu, J. Am. Chem. Soc., 2015, 137, 1706.

    Article  CAS  Google Scholar 

  4. V. I. Minkin, B. Ya. Simkin, R. Ya. Minyaev, Kvantovaya khimiya organicheskikh soedinenii. Mekhanismy reaktsii [Quantum Chemistry of Organic Compounds], Khimiya, Moscow, 1986, p. 10 (in Russian).

    Google Scholar 

  5. L. I. Belen´kii, A. N. Subbotin, N. D. Chuvylkin, Russ. Chem. Bull. (Int. Ed.), 2015, 64, 2050 [Izv. Akad. Nauk, Ser. Khim., 2015, 2050].

    Article  Google Scholar 

  6. R. Breslow, J. Am. Chem. Soc., 1957, 79, 1762.

    Article  CAS  Google Scholar 

  7. L. I. Belen´kii, A. N. Subbotin, N. D. Chuvylkin, Russ. Chem. Bull. (Int. Ed.), 2015, 64, 2610 [Izv. Akad. Nauk, Ser. Khim., 2015, 2610].

    Article  Google Scholar 

  8. N. D. Chuvylkin, A. N. Subbotin, L. I. Belen´kii, Russ. Chem. Bull. (Int. Ed.), 2016, 65, 939 [Izv. Akad. Nauk, Ser. Khim., 2016, 939].

    Article  CAS  Google Scholar 

  9. N. D. Chuvylkin, A. N. Subbotin, L. I. Belen´kii, Russ. Chem. Bull. (Int. Ed.), 2016, 65, 1716 [Izv. Akad. Nauk, Ser. Khim., 2016, 1716].

    Article  CAS  Google Scholar 

  10. L. I. Belen´kii, A. N. Subbotin, N. D. Chuvylkin, Russ. Chem. Bull. (Int. Ed.), 2016, 65, 1722 [Izv. Akad. Nauk, Ser. Khim., 2016, 1722].

    Article  Google Scholar 

  11. J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev., 2005, 105, 2999.

    Article  CAS  Google Scholar 

  12. N. D. Chuvylkin, I. D. Nesterov, L. I. Belen´kii, Russ. Chem. Bull. (Engl. Transl.), 2007, 56, 1481 [Izv. Akad. Nauk, Ser. Khim., 2007, 1425].

    Article  CAS  Google Scholar 

  13. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ц. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford (CT), 2013.

    Google Scholar 

  14. C. Peng, P. Y. Ayala, H. B. Schlegel, M. J. Frisch, J. Comp. Chem., 1996, 17, 49.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Belen´kii.

Additional information

For Part 9, see Ref. 1.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 0808—0812, May, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuvylkin, N.D., Subbotin, A.N. & Belen´kii, L.I. Quantum chemical studies of azoles 10. Transition states in the routes of electrophilic substitution in 1H-tetrazole via the elimination—addition mechanism without preliminary formation of N-protonated azolium salts. Russ Chem Bull 66, 808–812 (2017). https://doi.org/10.1007/s11172-017-1811-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-017-1811-y

Keywords

Navigation