Skip to main content
Log in

Magnetic cobalt ferrite nanoparticles functionalized with citric acid as a green nanocatalyst for one-pot three-component sonochemical synthesis of substituted 3-pyrrolin-2-ones

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A clean, convenient and facile approach for one-pot ultrasonic assisted synthesis of substituted 3-pyrrolin-2-ones from diethyl acetylenedicarboxylate, aniline and aldehyde derivatives is described. The reactions were carried out in the presence of an efficient, green and reusable acidic nanocatalyst, magnetic cobalt ferrite nanoparticles functionalized with citric acid (CoFe2O4@CA), with high yields under mild conditions. Also, use of ultrasound irradiation made this approach an attractive protocol for the synthesis of these products. The method has been successful in achieving the green chemistry objective. An energy efficient protocol using ultrasound irradiation instead of conventional heating or stirring and use of ethanol as a non-hazardous, inexpensive and green solvent in the one-step reaction against sequential reaction steps thus combining the features of both economic and environmental advantages.

Graphic abstract

In this research, magnetic cobalt ferrite nanoparticles functionalized with citric acid (CoFe2O4@CA) catalyzed synthesis of substituted 3-pyrrolin-2-ones under ultrasonic irradiation via a practical and environmentally benign one-pot three-component protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Scheme 3
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.C. Cioc, E. Ruijter, R.V. Orru, Green Chem. 16, 6 (2014)

    Article  Google Scholar 

  2. H. Zhang, Catal. Lett. 144, 5 (2014)

    Google Scholar 

  3. L.F. Gutierrez, E. Nope, H.A. Rojas, J.A. Cubillos, A.G. Sathicq, G.P. Romanelli, J.J. Martínez, Res. Chem. Intermed. 44, 5559–5568 (2018)

    Article  CAS  Google Scholar 

  4. C. Capello, U. Fischer, K. Hungerbühler, Green Chem. 9, 9 (2007)

    Article  CAS  Google Scholar 

  5. H. Ahankar, A. Ramazani, K. Ślepokura, T. Lis, S.W. Joo, Green Chem. 18, 12 (2016)

    Article  CAS  Google Scholar 

  6. D. Wang, D. Astruc, Chem. Rev. 114, 14 (2014)

    Google Scholar 

  7. M.B. Gawande, R. Luque, R. Zboril, ChemCatChem 6, 12 (2014)

    Article  CAS  Google Scholar 

  8. H. Ahankar, A. Ramazani, S.W. Joo, Res. Chem. Intermed. 42, 3 (2016)

    Article  CAS  Google Scholar 

  9. J.J. Martínez, E. Nope, H. Rojas, J. Cubillos, Á.G. Sathicq, G.P. Romanelli, Catal. Lett. 144, 7 (2014)

    Article  CAS  Google Scholar 

  10. S. Zolfagharinia, E. Kolvari, N. Koukabi, Catal. Lett. 147, 6 (2017)

    Article  CAS  Google Scholar 

  11. J.K. Rajput, G. Kaur, Catal. Sci. Technol. 4, 1 (2014)

    Article  Google Scholar 

  12. K.K. Senapati, C. Borgohain, P. Phukan, J. Mol. Catal. A Chem. 339, 1 (2011)

    Article  CAS  Google Scholar 

  13. A. Bazgir, G. Hosseini, R. Ghahremanzadeh, ACS Comb. Sci. 15, 10 (2013)

    Article  CAS  Google Scholar 

  14. L.H. Abdel Rahman, A.M. Abu-Dief, R.M. El-Khatib, S.M. Abdel-Fatah, A. Adam, E. Ibrahim, Appl. Organomet. Chem. 32, 3 (2018)

    Google Scholar 

  15. F. Sadri, A. Ramazani, A. Massoudi, M. Khoobi, R. Tarasi, A. Shafiee, V. Azizkhani, L. Dolatyari, S.W. Joo, Green Chem. Lett. Rev. 7, 3 (2014)

    Article  CAS  Google Scholar 

  16. M. Kooti, M. Afshari, Catal. Lett. 142, 3 (2012)

    Article  CAS  Google Scholar 

  17. S.Y. Srinivasan, K.M. Paknikar, D. Bodas, V. Gajbhiye, Nanomedicine 13, 1221–1238 (2018)

    Article  CAS  PubMed  Google Scholar 

  18. G. Baldi, D. Bonacchi, M.C. Franchini, D. Gentili, G. Lorenzi, A. Ricci, C. Ravagli, Langmuir 23, 7 (2007)

    Article  CAS  Google Scholar 

  19. R.A. Bohara, N.D. Thorat, H.M. Yadav, S.H. Pawar, N. J. Chem. 38, 7 (2014)

    Article  CAS  Google Scholar 

  20. A. Meyers, L. Snyder, J. Org. Chem. 58, 1 (1993)

    Article  Google Scholar 

  21. A.G. Malykh, M.R. Sadaie, Drugs 70, 3 (2010)

    Article  Google Scholar 

  22. L.P. Dwoskin, L. Teng, S.T. Buxton, P.A. Crooks, J. Pharmacol. Exp. Ther. 288, 3 (1999)

    Google Scholar 

  23. P.N. Patsalos, Epilepsia 46, 140–148 (2005)

    Article  CAS  PubMed  Google Scholar 

  24. P. Singh, V. Dimitriou, R. Mahajan, A. Crossley, Br. J. Anaesth. 71, 5 (1993)

    Google Scholar 

  25. F. Haaf, A. Sanner, F. Straub, Polym. J. 17, 1 (1985)

    Article  Google Scholar 

  26. R.H. Feling, G.O. Buchanan, T.J. Mincer, C.A. Kauffman, P.R. Jensen, W. Fenical, Angew. Chem. Int. Ed. 42, 3 (2003)

    Article  Google Scholar 

  27. S. Omura, T. Fujimoto, K. Otoguro, K. Matsuzaki, R. Moriguchi, H. Tanaka, Y. Sasaki, J. Antibiot. 44, 1 (1991)

    Article  Google Scholar 

  28. Y. Asami, H. Kakeya, R. Onose, A. Yoshida, H. Matsuzaki, H. Osada, Org. Lett. 4, 17 (2002)

    Article  CAS  Google Scholar 

  29. A.L. Harreus, R. Backes, J.O. Eichler, R. Feuerhake, C. Jäkel, U. Mahn, R. Pinkos, R. Vogelsang, Ullmann’s Encycl. Ind. Chem. 1–7 (2011)

  30. K. Ma, P. Wang, W. Fu, X. Wan, L. Zhou, Y. Chu, D. Ye, Bioorg. Med. Chem. Lett. 21, 22 (2011)

    Google Scholar 

  31. Y. Geng, X. Wang, L. Yang, H. Sun, Y. Wang, Y. Zhao, R. She, M.-X. Wang, D.-X. Wang, J. Tang, PLoS ONE 10, 6 (2015)

    Google Scholar 

  32. V. Koz’minykh, N. Igidov, S. Zykova, V. Kolla, N. Shuklina, T. Odegova, Pharm. Chem. J. 36, 4 (2002)

    Article  Google Scholar 

  33. V. Gein, V. Mihalev, N. Kasimova, E. Voronina, M. Vakhrin, E. Babushkina, Pharm. Chem. J. 41, 4 (2007)

    Google Scholar 

  34. V. Gein, V. Yushkov, N. Kasimova, N. Shuklina, M.Y. Vasil’eva, M. Gubanova, Pharm. Chem. J. 39, 9 (2005)

    Google Scholar 

  35. V. Gein, M. Armisheva, N. Rassudikhina, M. Vakhrin, E. Voronina, Pharm. Chem. J. 45, 3 (2011)

    Google Scholar 

  36. CrysAlisCCD and CrysAlisRED in KM4-CCD software. Oxford Diffraction Ltd.: Yarnton, Oxfordshire, England (2010)

  37. G.M. Sheldrick, Acta Crystallogr. Sect. A Found. Adv. 71, 1 (2015)

    Article  CAS  Google Scholar 

  38. G.M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem. 71, 1 (2015)

    Article  CAS  Google Scholar 

  39. K. Brandenburg, DIAMOND Version 3.2k. Crystal Impact GbR, Bonn, Germany (2014)

  40. S.Y. Zhao, D.-G. Lee, C.-W. Kim, H.-G. Cha, Y.-H. Kim, Y.-S. Kang, Bull. Korean Chem. Soc. 27, 2 (2006)

    Google Scholar 

  41. J. Sun, Q. Wu, E.Y. Xia, C.G. Yan, Eur. J. Org. Chem. 2011, 16 (2011)

    Google Scholar 

  42. C.R. Groom, I.J. Bruno, M.P. Lightfoot, S.C. Ward, Acta Crystallogr. Sect. B Struct. Sci. 72, 2 (2016)

    Article  CAS  Google Scholar 

  43. A. Ramazani, H. Ahankar, K. Ślepokura, T. Lis, S.W. Joo, J. Struct. Chem. 60, 662–670 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the “Iran National Science Foundation”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ramazani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 26680 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahankar, H., Ramazani, A., Ślepokura, K. et al. Magnetic cobalt ferrite nanoparticles functionalized with citric acid as a green nanocatalyst for one-pot three-component sonochemical synthesis of substituted 3-pyrrolin-2-ones. Res Chem Intermed 45, 5007–5025 (2019). https://doi.org/10.1007/s11164-019-03878-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-03878-1

Keywords

Navigation