Skip to main content
Log in

Salicylic acid induces the change in the adventitious root of Glycyrrhiza uralensis Fisch.: bioactive compounds and antioxidant enzymes

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In this study, adventitious roots of Glycyrrhiza uralensis were cultured in a 5-L balloon-type bubble bioreactor with different medium salt strength and different concentrations of sucrose. The results of the culture showed that the best culture conditions were 4 % sucrose concentration and 1 MS medium for the accumulation of secondary metabolites. Salicylic acid has previously been used as an elicitor in tissue cultures to enhance production of secondary metabolites. Addition of 1 mg L−1 salicylic acid significantly enhanced the contents of glycyrrhizic acid (0.31 mg g−1), glycyrrhetinic acid (0.14 mg g−1) and polysaccharide (159.29 mg g−1) in the G. uralensis adventitious roots and the contents were 2.58-fold, 1.27-fold, and 2.07-fold over the control group. Furthermore, the greatest content of total flavonoid (9.40 mg g−1) was observed with 2 mg L−1 salicylic acid added in the culture, which was 2.68-fold higher than the control. The ESI-MSn analysis was also performed, showing that two new kinds of flavonoids, including (3R)-vestitol and glycyrol, were only identified in the salicylic acid treatment. In addition, we also found that salicylic acid significantly increased superoxide dismutases, catalases, and peroxidase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.R. Jordan, S. Satoru, S. Hikaru, M. Keiichi, Y. Takuhiro, S. Tetsuya, M. Toshiya, S. Kazuki, O.D. Carsten, Plant Cell Physiol. 54, 697–710 (2013)

    Article  Google Scholar 

  2. D. Wang, Y.X. Pang, W.Q. Wang, C.Y. Wan, J.L. Hou, F.L. Yu, Q.L. Wang, F.B. Liu, X.D. Zhang, Syst. Ecol. 50, 93–100 (2013)

    Article  CAS  Google Scholar 

  3. B. Schrofelbauer, J. Raffetseder, M. Hauner, A. Wolkerstorfer, W. Ernst, O.H. Szolar, Biochem. J. 421, 473–482 (2009)

    Article  Google Scholar 

  4. X.H. Cao, S.T. Gibbs, L.Y. Fang, H.A. Mille, C.P. Landowski, H.C. Shin, H. Lennernas, Y.Q. Zhong, G.L. Amidon, L.X. Yu, D.X. Sun, Pharm. Res. 23, 1675–1686 (2006)

    Article  CAS  Google Scholar 

  5. Y.J. Li, J. Chen, Y. Li, Q. Li, Y.F. Zheng, Y. Fu, P. Li, J. Chromatogr. A. 1218, 8181–8191 (2011)

    Article  CAS  Google Scholar 

  6. S.J. Kim, H.N.E. Murthy, J. Hahn, H.L. Lee, K.Y. Paek, Food Sci. Technol. 41, 959–964 (2008)

    CAS  Google Scholar 

  7. F.C. Wan, A.W. Cheng, Mediterr. J. Nutr. Metab. 1, 165–169 (2009)

    Article  Google Scholar 

  8. Y. Liu, X.J. Zhan, W.D. Li, Y. Gao, H. Wen, H.H. Chen, L.Q. Wang, C.S. Liu, Acta Physiol. Plant. 36, 1433–1440 (2014)

    Article  CAS  Google Scholar 

  9. C.H. Wu, Y.H. Dewir, E.J. Hahn, K.Y. Paek, J. Plant Biol. 49, 193–199 (2006)

    Article  CAS  Google Scholar 

  10. Y. Kim, B. Wyslouzil, P. Weathers, In Vitro Cell Dev. Biol. Plant. 38, 1–10 (2002)

    Article  CAS  Google Scholar 

  11. J.A. Jeong, C.H. Wu, H.N. Murthy, E.J. Hahn, K.Y. Paek, Biotechnol. Bioprocess. Eng. 14, 91–98 (2009)

    Article  CAS  Google Scholar 

  12. R. Chetana, K.G. Ramawat, Plant Biotechnol. Rep. 3, 135–138 (2009)

    Article  Google Scholar 

  13. D.O. Claudio, C. Agnieszka, D. Christopher, K.B. Paul, Funct. Plant Biol. 36, 323–338 (2009)

    Article  Google Scholar 

  14. M.F.A. Shukor, I. Ismail, Z. Zainal, N.M. Noor, Acta Physiol. Plant. 35, 1675–1689 (2013)

    Article  CAS  Google Scholar 

  15. Z.Z. Cai, I. Semetanska, A. Kastell, D. Knorr, Plant Cell Rep. 31, 461–477 (2012)

  16. J. Zhao, L.C. Davis, R. Verpoorte, Biotechnol. Adv. 23, 283–333 (2005)

    Article  CAS  Google Scholar 

  17. T.T. Li, Y.Y. Hu, X.H. Du, H. Tang, C.H. Shen, J.S. Wu, PLoS One (2014). doi:10.1371/journal.pone.0109492

    Google Scholar 

  18. R.H. Huang, J.H. Liu, Y.M. Lu, R.X. Xia, Postharvest Boil Tec. 47, 168–175 (2008)

    Article  CAS  Google Scholar 

  19. P. Pandey, R.K. Srivastava, R.S. Dubey, Ecotoxicology 22, 656–670 (2013)

    Article  CAS  Google Scholar 

  20. S.S. Yin, Y. Zhang, W.Y. Gao, J. Wang, S.L. Man, H. Liu, Acta Physiol. Plant. 36, 915–921 (2014)

    Article  CAS  Google Scholar 

  21. J. Wang, J. Zhang, W.Y. Gao, Q. Wang, S.S. Yin, H. Liu, S.L. Man, Ind. Crop. Prod. 49, 675–681 (2013)

    Article  CAS  Google Scholar 

  22. J.H. Chen, M.Y. Xie, S.P. Nie, Y.X. Wang, R.H. Peng, J Food Sci Biotechnol. 24, 72–76 (2005)

    Google Scholar 

  23. J. Zhang, W.Y. Gao, J. Wang, X.L. Li, Acta Physiol. Plant. 34, 1345–1351 (2012)

    Article  CAS  Google Scholar 

  24. W.W. Su, Appl. Biochem. Biotech. 50, 189–230 (1995)

    Article  CAS  Google Scholar 

  25. X.H. Cui, H.N. Murthy, C.H. Wu, K.Y. Paek, Plant Cell Tiss. Org. Cult. 103, 7–14 (2010)

    Article  CAS  Google Scholar 

  26. S.S. Yin, W.Y. Gao, Y.Y. Liang, J. Wang, H. Liu, C.L. Wei, B.M. Zuo, Acta Physiol. Plant. 35, 1579–1585 (2013)

    Article  CAS  Google Scholar 

  27. D.D.Y. Ryu, S.O. Lee, R.J. Romani, Biotechnol. Bioeng. 35, 305–311 (1990)

    Article  CAS  Google Scholar 

  28. E.J. Lee, K.Y. Peak, Ind Crop Prod. 36, 460–465 (2012)

    Article  CAS  Google Scholar 

  29. O. Yamamoto, K. Kamura, Plant Tiss. Cult. Biotechnol. 3, 138–147 (1997)

    Google Scholar 

  30. K.W. Yu, E.J. Hahn, K.Y. Paek, Korean J. Plant Tiss. Cult. 27, 309–315 (2000)

    Google Scholar 

  31. I. Raskin, H. Skubatz, W. Tang, B.J.D. Meeuse, Ann. Bot. 66, 369–373 (1990)

    CAS  Google Scholar 

  32. V. Shulaev, J. Leon, I. Raskin, Plant. Cell. 7, 1691–1701 (1995)

    Article  CAS  Google Scholar 

  33. Y.S. Lee, H.K. Ju, Y.J. Kim, T.G. Lim, M.R. Uddin, Y.B. Kim, H. Baek, S.W. Kwon, K.W. Lee, H.S. Seo, S.U. Park, T.J. Yang, PLoS One (2013). doi:10.1371/journal.pone.0082479

    Google Scholar 

  34. N. Chaichana, S. Dheeranupattana, Int. J. Biosci. Biochem. Bioinform. 2, 146–150 (2012)

    Google Scholar 

  35. G.J. Li, S.C. Wang, K. Xia, X. Zhou, Plant Growth Regul. 39, 27–32 (2003)

    Article  CAS  Google Scholar 

  36. G. Sivanandhan, M. Arun, S. Mayavan, M. Rajesh, M. Jeyaraj, G.K. Dev, M. Manickavasagam, N. Selvaraj, A. Ganapathi, Appl. Biochem. Biotechnol. 168, 681–696 (2012)

    Article  CAS  Google Scholar 

  37. T.M. Chong, M.A. Abdullahd, N.M. Fadzillahb, O.M. Lai, N.H. Lajis, Enzyme Microb. Technol. 36, 469–477 (2005)

    Article  CAS  Google Scholar 

  38. M.A. Baque, M.H.K. Shiragi, S.H. Moh, E.J. Lee, K.Y. Paek, In Vitro Cell. Dev. Biol. Plant. 49, 737–749 (2013)

    Article  CAS  Google Scholar 

  39. M.B. Ali, K.W. Yu, E.J. Hahn, K.Y. Paek, Plant Cell Rep. 25, 613–620 (2006)

    Article  CAS  Google Scholar 

  40. M.B. Ali, E.J. Hahn, K.Y. Paek, Molecules 12, 607–621 (2007)

    Article  CAS  Google Scholar 

  41. J. Dong, G.W. Wan, Z.S. Liang, J. Biotechnol. 148, 99–104 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by 863 Program (2014AA022201-04), Central Significant Increase or Decrease Program, China (2060302) and National Science and Technology Support Program (2012BAI29B02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyuan Gao.

Additional information

Juan Wang: co-first author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, J., Li, J. et al. Salicylic acid induces the change in the adventitious root of Glycyrrhiza uralensis Fisch.: bioactive compounds and antioxidant enzymes. Res Chem Intermed 42, 1503–1519 (2016). https://doi.org/10.1007/s11164-015-2099-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-2099-x

Keywords

Navigation