Skip to main content
Log in

New nitrogen-donor pyrazole ligands for excellent liquid–liquid extraction of Fe2+ ions from aqueous solution, with theoretical study

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

New N-donor pyrazole derivatives L 1 L 6 were prepared by monoalkylation, by simple and easy condensation of one equivalent of 1-(hydroxymethyl)-3,5-dimethylpyrazole and one equivalent of an appropriate primary amine. The compounds were used to extract different metal ions. Their capacity in extraction of Cu2+, Cd2+, Pb2+, Co2+, Ni2+, Zn2+, and Fe2+ was determined by measurement, by atomic absorption, of percentage extraction of the cation at pH 7. All the ligands tested extract these metals with different efficiency: efficiency of L 2 was 99 % for Fe2+ and 29 % for Zn; efficiency of L 4 was 24 % for Cu2+ and Cd2+ and 19 % for Pb2+. The geometries were optimized, the energies, spatial distributions, energies of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), the difference between these (E LUMO − E HOMO), known as energy band gap (ΔE), bond lengths, charges on the atoms, and electrostatic potential were then calculated. The molecule with smallest value of ΔE is the most reactive (least stable) and correlation proves that the efficiency of extraction of Fe2+ increases as molecular stability decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D.R. Williams, Metal Ions in Vivo In The Metals of Life (Van Nostrand Reinhold, London, 1971). Chapter 2

    Google Scholar 

  2. M.N. Hughes, The Alkali Metal and Alkaline-Earth Metal Cations in Biology In The Inorganic Chemistry of Biological Processes (Wiley, New York, 1972). Chapter 8

    Google Scholar 

  3. J.J.R.F. Da Silva, R.J.P. Williams, Struct. Bond. 29, 120 (1976)

    Google Scholar 

  4. R. Osterberg, The Origin and Specificity of Metal Ions in Biology, in An Introduction to Bio-Inorganic Chemistry, ed. by D.R. Williams (Charles C. Thomas, Springfield, 1976). Chapter 2

    Google Scholar 

  5. F.G.E. Pautard, R.J.P. Williams, Biological minerals. Chem. Br. 88, 191 (1982)

    Google Scholar 

  6. C.D. Garner, P.M. Harrisson, Chem. Br. 173 (1982)

  7. D.D. Ulmer, Fed. Proc. 32, 1758 (1973)

    CAS  Google Scholar 

  8. J.M. Wood, La recherche 70, 711 (1976)

    Google Scholar 

  9. J.J. Dulka, T.H. Risby, Anal. Chem. 48, 640 (1976)

    Article  Google Scholar 

  10. L. Järup, Br. Med. Bull. 68, 167 (2003)

    Article  Google Scholar 

  11. S. Rapposelli, A. Lapucci, F. Minutolo, E. Orlandini, G. Ortore, M. Pinza, A. Balsamo, Farmaco 59, 25 (2004)

    Article  CAS  Google Scholar 

  12. A.K. Tewari, A. Mishra, Bioorg. Med. Chem. 9, 715 (2001)

    Article  CAS  Google Scholar 

  13. H.J. Park, K. Lee, S. Park, B. Ahn, J.C. Lee, H.Y. Cho, K.I. Lee, Bioorg. Med. Chem. Lett. 15, 3307 (2005)

    Article  CAS  Google Scholar 

  14. B. Cotinneau, P. Toto, C. Marot, A. Pipaud, J. Chenaulit, Bioorg. Med. Chem. Lett. 12, 2105 (2002)

    Article  Google Scholar 

  15. S.L. Janus, A.Z. Magdif, B.P. Erik, N. Claus, Monatsh. Chem. 130, 1167 (1999)

    Google Scholar 

  16. E.V. Pimerova, E.V. Voronina, Pharm. Chem. J. 35, 18 (2001)

    Article  Google Scholar 

  17. P. Cali, L. Naerum, S. Mukhija, A. Hjelmencrantz, Bioorg. Med. Chem. Lett. 14, 5997 (2004)

    Article  CAS  Google Scholar 

  18. M. Sechi, L. Sannia, F. Carta, M. Palomba, R. Dallocchio, A. Dessi, M. Derudas, Z. Zawahir, N. Neamati, Antivir. Chem. Chemother. 16, 41 (2005)

    Article  CAS  Google Scholar 

  19. S. Radi, S. Salhi, A. Radi, Lett. Drug Des. Discovery 7, 27 (2010)

    Article  CAS  Google Scholar 

  20. D.L. Christenson, C.J. Tokar, W.B. Tolman, Organometallics 14, 2148 (1995)

    Article  CAS  Google Scholar 

  21. S.J. Slattery, W.D. Bare, D.L. Jameson, K.A. Goldsby, J. Chem. Soc. Dalton Trans. 1347 (1999)

  22. C. Marzin, F. Budde, P.J. Steel, D. Lerner, New J. Chem. 11, 33 (1987)

    CAS  Google Scholar 

  23. M.A. Esteruclas, A. Gomez, A. Lopez, E. Onate, Organometallics 17, 3567 (1998)

    Article  Google Scholar 

  24. G. Tarrago, I. Zidane, C. Marzin, A. Tep, Tetrahedron 44, 91 (1988)

    Article  CAS  Google Scholar 

  25. M.R. Malachowski, M.G. Davidson, Inorg. Chim. Acta 162, 199 (1989)

    Article  CAS  Google Scholar 

  26. T. Harit, M. Cherfi, J. Isaad, A. Riahi, F. Malek, Tetrahedron 68, 4037 (2012)

    Article  CAS  Google Scholar 

  27. I. Bouabdallah, I. Zidane, R. Touzani, B. Hacht, A. Ramdani, Arkivoc 11, 59 (2006)

    Article  Google Scholar 

  28. I. Bouabdallah, I. Zidane, R. Touzani, B. Hacht, A. Ramdani, Arkivoc 10, 77 (2006)

    Article  Google Scholar 

  29. A. Pañella, J. Pons, J. García-Antón, X. Solans, M. Font-Bardia, J. Ros, Inorg. Chim. Acta 359, 2343 (2006)

    Article  Google Scholar 

  30. G. Esquius, J. Pons, R. Yáñez, J. Ros, J. Organomet. Chem. 619, 14 (2001)

    Article  CAS  Google Scholar 

  31. H.A. Soleiman, A.K. Khalafallah, H. Abd-Ellatif, Eur. J. Chem. 3, 316 (2012)

    Article  CAS  Google Scholar 

  32. I. Dvoretzky, G.H. Richter, J. Org. Chem. 15, 1285 (1950)

    Article  CAS  Google Scholar 

  33. M. El Kodadi, F. Malek, A. Ramdani, Molbank 1, M369 (2004)

    Article  Google Scholar 

  34. Hyperchem 8.0.6, Molecular Visualization and Simulation Program Package (Hypercube Inc, Gainesville, 2007)

  35. U. Burkert, N.L. Allinger, Molecular Mechanics ACS Monograph (American Chemical Society, Washington, DC, 1982), p. 177

    Google Scholar 

  36. J.-H. Li, S. Gallion, C. Bender, Wikstroom, H.N.L. Allinger, K.M. Flurchick, M.M. Teeter, J. Comput. Chem. 10, 503 (1989)

    Article  CAS  Google Scholar 

  37. A. Zarrouk, B. Hammouti, R. Touzani, DFT and Quantum Chemical Studies for Heterocyclic Compounds Used as Corrosion Organic Inhibitors (LAP Lambert Ac. Publishing Ed., Saarbrücken, 2012), ISBN 978-3-659-21601-5

  38. M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, J.J.P. Stewart, J. Am. Chem. Soc. 107, 3902 (1985)

    Article  CAS  Google Scholar 

  39. H.D. Holtje, W. Sippl, D. Rognan, G. Folkers, Molecular modeling (Wiley, Dussedorf-Zuric, 2003)

    Google Scholar 

  40. C.C.J. Roothaan, Rev. Mod. Phys. 23, 69 (1951)

    Article  CAS  Google Scholar 

  41. P. Fletcher, Practical Method of Optimization (Wiley, New York, 1990)

    Google Scholar 

  42. R. Touzani, A. Ramdani, T. Ben-Hadda, S. El Kadiri, O. Maury, H. Le Bozec, P.H. Dixneuf, Synth. Commun. 31, 1315 (2001)

    Article  CAS  Google Scholar 

  43. H. Irving, R. J. P. Williams, J. Chem. Soc. 3192 (1953)

Download references

Acknowledgments

Financial support by la Commission Universitaire pour le Développement (CUD—Belgium) is highly appreciated. We thank also le Centre de l’Oriental des Sciences et Technologies de l’Eau (COSTE) for use of Atomic Absorption Spectroscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachid Touzani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khoutoul, M., Abrigach, F., Zarrouk, A. et al. New nitrogen-donor pyrazole ligands for excellent liquid–liquid extraction of Fe2+ ions from aqueous solution, with theoretical study. Res Chem Intermed 41, 3319–3334 (2015). https://doi.org/10.1007/s11164-013-1435-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-013-1435-2

Keywords

Navigation