Skip to main content
Log in

Quantum chemical studies on some thiadiazolines as corrosion inhibitors for mild steel in acidic medium

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Density functional theory at the B3LYP/6-31G(d,p) basis set level was performed on three thiadiazolines, namely 4-chloro-N-(5-phenyl-1,3,4-thiadiazol-2(3H)-ylidene)aniline (TD01), 4-chloro-N-(5-(4-methoxyphenyl)-1,3,4-thiadiazol-2(3H)-ylidene)aniline (TD02), and 2-(5-(4-chlorophenylimino)-4,5-dihydro-1,3,4-thiadiazol-2-yl) phenol (TD03), and the inhibitive effect of these thiadiazolines against the corrosion of mild steel in acidic medium is elucidated. The calculated quantum chemical parameters correlated to the inhibition efficiency are EHOMO (highest occupied molecular orbital energy), ELUMO (lowest unoccupied molecular orbital energy), the energy gap (ΔE) hardness (η), softness (S), dipole moment (μ), electron affinity (EA) ionization potential (IE), the absolute electro negativity (χ), and the fraction of electron transferred (ΔN). The decreasing order of %IE of the thiadiazolines studied was found to be in agreement with experimental corrosion inhibition efficiencies. The local reactivity has been analyzed through the condensed Fukui function and local softness indices using population analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. N.O. Eddy, S.A. Odoemelam, Adv. Nat. Appl. Sci. 2(1), 35 (2008)

    CAS  Google Scholar 

  2. S.A. Umoren, I.B. Obot, E.E. Ebenso, N.O. Obi-Egbedi, Int. J. Electrochem. Sci. 3, 1029 (2008)

    CAS  Google Scholar 

  3. S.S. Abd El-Rehim, M.A.M. Ibrahimand, F.F.J. Khaled, Appl. Electrochem. 29, 593 (1999)

    Article  Google Scholar 

  4. H.L. Wang, R.B. Liu, J. Xin, Corros. Sci. 46, 2455 (2004)

    Article  CAS  Google Scholar 

  5. S. Rengamati, S. Muralidharan, M. Anbu Kulamdainathan, S. Venkatakrishna Iyer, J. Appl. Electrochem. 24, 355 (1994)

    Google Scholar 

  6. E.E. Ebenso, Bull. Electrochem. 19, 209 (2003)

    CAS  Google Scholar 

  7. N. Khalil, Electrochim. Acta 48, 2635 (2003)

    Article  CAS  Google Scholar 

  8. S.L. Granese, Corrosion 44, 322 (1988)

    Article  CAS  Google Scholar 

  9. D. Wang, S. Li, Y. Ying, M. Wang, H. Xiao, Z. Chen, Corros. Sci. 41, 1911 (1999)

    Article  CAS  Google Scholar 

  10. J. Vosta, J. Eliasek, Corros. Sci. 11, 223 (1971)

    Article  CAS  Google Scholar 

  11. P. Choa, Q. Liang, Y. Li, Appl. Surf. Sci. 252, 1596 (2005)

    Article  Google Scholar 

  12. Y. Xiao-Ci, Z. Hong, L. Ming-Dao, R. Hong-Xuang, Y. Lu-An, Corros. Sci. 42, 645 (2000)

    Article  CAS  Google Scholar 

  13. F. Bentiss, M. Lebrini, M. Lagrenee, Corros. Sci. 47, 2915 (2005)

    Article  CAS  Google Scholar 

  14. R.M. Issa, M.K. Awad, F.M. Atlam, Appl. Surf. Sci. 255, 2433 (2008)

    Article  CAS  Google Scholar 

  15. P. Hohenberg, W. Kohn, Phys. Rev. 136B, 864 (1964)

    Article  Google Scholar 

  16. R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989)

    Google Scholar 

  17. M.H. Cohen, in Topics in Current Chemistry, ed. by R.F. Nalewajski (Springer, Heidelberg, 1996), p. 143

  18. R.T. Sanderson, J. Am. Chem. Soc. 74, 272 (1952)

    Article  CAS  Google Scholar 

  19. R.G. Parr, R.A. Donnelly, M. Levy, W.E. Palke, J. Chem. Phys. 68, 801 (1978)

    Article  Google Scholar 

  20. R.G. Parr, W. Yang, J. Am. Chem. Soc. 106, 4049 (1984)

    Article  CAS  Google Scholar 

  21. R.G.J. Pearson, Am. Chem. Soc. 85, 3533 (1963)

    Article  CAS  Google Scholar 

  22. J. Fang, J. Li, J. Mol. Struct. Theochem. 593, 179 (2002)

    Article  CAS  Google Scholar 

  23. T. Arslan, F. Kandemirli, E.E. Ebenso, I. Love, H. Alemu, Corros. Sci. 51, 35 (2009)

    Article  CAS  Google Scholar 

  24. L.M. Rodriguez-Valdez, A. Martinez-Villafane, D. Glossman-Mitnik, J. Mol. Struct. 713, 65 (2005)

    Article  CAS  Google Scholar 

  25. M. Lebrini, M. Lagrenee, H. Vezin, L. Gengembre, F. Bentiss, Corros. Sci. 47(2), 485 (2005)

    Article  CAS  Google Scholar 

  26. H. El Sayed, El Ashry, Ahmed El Nemr, S.A. Esawy, S. Ragab, Electrochim. Acta. 51, 3957 (2006)

    Article  Google Scholar 

  27. F. Bentiss, M. Lebrini, M. Lagrenee, M. Traisnel, A. Elfarouk, H. Vezin, Electrochim. Acta 52(24), 6865 (2007)

    Article  CAS  Google Scholar 

  28. A.S. Fouda, F.E. Heakal, M.S. Radwan, J. Appl. Electrochem. 39, 391 (2009)

    Article  CAS  Google Scholar 

  29. M. Lebrini, M. Lagrenee, M. Traisnel, I. Gengembre, H. Vezin, F. Bentiss, Appl. Surf. Sci. 253, 9267 (2007)

    Article  CAS  Google Scholar 

  30. A. Shamitha Begum, J. Mallika, P. Gayathri, E J. Chem. 7(1), 185 (2010)

    Article  CAS  Google Scholar 

  31. M.J. Frisch, G.W. Trucks, H.B. Schlegel et al., Gaussian 03, (Gaussian, Inc., Pittsburgh, 2003)

  32. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  CAS  Google Scholar 

  33. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B41, 785 (1988)

    Google Scholar 

  34. L. Rodriguez-Valdez, A. Martinez-Villafane, D. Glossman-Mitnik, J. Mol. Struct. (THEOCHEM). 716, 61 (2005)

    Article  CAS  Google Scholar 

  35. M. Lashkari, M.R. Arshadi, Chem. Phys. 299, 131 (2004)

    Article  CAS  Google Scholar 

  36. R.G. Parr, R.A. Donnelly, M. Levy, W.E. Palke, J. Chem. Phys. 68, 3801 (1978)

    Article  CAS  Google Scholar 

  37. R.G. Parr, R.G. Pearson, J. Am. Chem. Soc. 105, 7512 (1983)

    Article  CAS  Google Scholar 

  38. R.G. Pearson, Inorg. Chem. 27, 734 (1988)

    Article  CAS  Google Scholar 

  39. R.G. Pearson, J. Am. Chem. Soc. 85, 3533 (1963)

    Article  CAS  Google Scholar 

  40. H. Chermette, J. Comput. Chem. 20, 129 (1999)

    Article  CAS  Google Scholar 

  41. N.O. Eddy, S.R. Stoyanov, E.E. Ebenso, J. Electro Chem. Sci. 5, 1127 (2010)

    CAS  Google Scholar 

  42. H. Wang, X. Wang, H. Wang, L. Wang, A. Liu, J. Mol. Model. 13, 147 (2007)

    Article  CAS  Google Scholar 

  43. I.B. Obot, N.O. Obi-Egbedi, S.A. Umoren, Int. J. Electrochem. Sci. 4, 863 (2009)

    CAS  Google Scholar 

  44. A. Dwivedi, N. Mishra, Der. Pharm. Chem. 2, 58 (2010)

    CAS  Google Scholar 

  45. X. Li, S. Deng, H. Fu, T. Li, Electrochim. Acta 54, 4089 (2009)

    Article  CAS  Google Scholar 

  46. P. Geerlings, F. De Proft, Int. J. Mol. Sci. 3, 276 (2002)

    Article  CAS  Google Scholar 

  47. S.R. Stoyanov, S. Gusarov, M.S. Kuznicki, A. Kovalenko, J. Phys. Chem. 112, 6794 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Udhayakala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Udhayakala, P., Jayanthi, A., Rajendiran, T.V. et al. Quantum chemical studies on some thiadiazolines as corrosion inhibitors for mild steel in acidic medium. Res Chem Intermed 39, 895–906 (2013). https://doi.org/10.1007/s11164-012-0603-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-012-0603-0

Keywords

Navigation