Skip to main content
Log in

Electrochemical, Characterization, and Quantum Chemical Studies of Two Newly Synthesized Aromatic Aldehydes-Based Xanthene Diones as Corrosion Inhibitors for Mild Steel in 1 M Hydrochloric Acid

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

The inhibiting effect of two newly synthesized inhibitors, namely 3,3,6,6-tetramethyl-9-phenyl-3,4,6,7-tetrahydro-2H-xanthenes-1,8(5H,9H)-dione (ZM-1) and 9-(4-Bromophenyl)-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-2H-xanthene-1,8-dine (ZM-2) on mild steel (MS) corrosion in 1 M HCl solution has been examined. For this purpose, Electrochemical Impedance Spectroscopy (EIS) and Potentiodynamic Polarization measurements (PP) have been carried out. Furthermore, theoretical chemistry concepts have been used to calculate and analyze the molecule’s quantum parameters. This has been accomplished using Density Functional Theory (DFT). Molecular Dynamic Simulation has been used to interpret the inhibiting action mode. It has been perceived that the increase of inhibitor concentration managed to significant corrosion rate reduction of MS in 1 M HCl, with inhibitive efficiency values reaching, respectively, 84% and 87% at 10−3 M inhibitor concentrations of ZM-1 and ZM-2. The inhibition efficiency is augmented with an inhibitor concentration increase. Temperature influence on the corrosion behavior of MS in 1 M HCl at the inhibitor’s optimal concentration of 10−3 M was studied in the range of temperature 298–328 K. Polarization plots showed that ZM-1 and ZM-2 acted as mixed-type inhibitors. The adsorption mechanism of the studied inhibitors was consistent with the Langmuir isotherm model. The corroded surface has also been analyzed by SEM/EDX; AFM, contact angle, and XRD techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Goyal M, Kumar S (2018) Organic corrosion inhibitors for industrial cleaning of ferrous and non-ferrous metals in acidic solutions: a review. J Mol Liq 02:45–71. https://doi.org/10.1016/j.molliq.2018.02.045

    Article  CAS  Google Scholar 

  2. Hau NN, Huong DQ (2022) Effect of aromatic rings on mild steel corrosion inhibition ability of nitrogen heteroatom-containing compounds: experimental and theoretical investigation. Journal of Molecular Structure. 1277:134884

    Article  Google Scholar 

  3. Abdeen DH, El Hachach M, Koc M, Atieh MA (2019) A review on the corrosion behaviour of nanocoatings on metallic substrates. Materials (Basel). https://doi.org/10.3390/ma12020210

    Article  Google Scholar 

  4. Berrissoul A, Loukili E, Mechbal N, Benhiba F, Guenbour A, Dikici B, Zarrouk A, Dafali A (2020) Anticorrosion effect of a green sustainable inhibitor on mild steel in hydrochloric acid. J Colloid Interf Sci 580:740–752. https://doi.org/10.1016/j.jcis.2020.07.073

    Article  CAS  Google Scholar 

  5. Ravi S, Peters S, Varathan E, Ravi M (2023) Molecular interaction and corrosion inhibition of benzophenone and its derivative on mild steel in 1 N HCl: electrochemical, DFT and MD simulation studies. Colloids Surf, A 661:130919

    Article  CAS  Google Scholar 

  6. Singh AK, Thakur S, Pani B, Chugh B, Lgaz H, Chung I, Chaubey P, Pandey AK, Singh J (2019) Solvent-free microwave assisted synthesis and corrosion inhibition study of a series of hydrazones derived from thiophene derivatives : experimental, surface and theoretical study. J Mol Liq 283:788–803. https://doi.org/10.1016/j.molliq.2019.03.126

    Article  CAS  Google Scholar 

  7. Rbaa M, Lakhrissi B (2019) Novel oxazole and imidazole based on 8-hydroxyquinoline as a corrosion inhibition of mild steel in HCl solution: Insights from experimental and computational studies. Surfaces and Interfaces 15:43–59. https://doi.org/10.1016/j.surfin.2019.01.010

    Article  CAS  Google Scholar 

  8. Mostafatabar AH, Bahlakeh G, Ramezanzadeh B, Dehghani A, Ramezanzadeh M (2021) A comprehensive electronic-scale DFT modeling, atomic-level MC/MD simulation, and electrochemical/surface exploration of active nature-inspired phytochemicals based on Heracleum persicum seeds phytoextract for effective retardation of the acidic-induced c. J Mol Liq 331:115764. https://doi.org/10.1016/j.molliq.2021.115764

    Article  CAS  Google Scholar 

  9. Ferigita KS, Miled MS, AlFalah MGK, Yilmazer MI, Kokbudak Z, Kaya S, Kandemirli F (2023) Corrosion inhibition of mild steel in acidic media using new oxo-pyrimidine derivatives: experimental and theoretical insights. J Mol Struct 1284:135361

    Article  CAS  Google Scholar 

  10. Rbaa M, Errahmany N, El Kacimi Y, Galai M, El Faydy M, Lakhrissi Y, Ebn Touhami M, Lakhrissi B (2018) Chemical and electrochemical studies of novel quinazolinone derivatives based on 8-hydroxyquinoline as corrosion inhibitor for mild steel in 1.0 M HCl solution. Anal Bioanal Electrochem 10:1328–1354

    CAS  Google Scholar 

  11. Rbaa M, Benhiba F, Abousalem AS, Galai M, Rouifi Z, Oudda H, Lakhrissi B, Warad I, Zarrouk A (2020) Sample synthesis, characterization, experimental and theoretical study of the inhibitory power of new 8-hydroxyquinoline derivatives for mild steel in 1.0 M HCl. J Mol Struct 1213:1–13. https://doi.org/10.1016/j.molstruc.2020.128155

    Article  CAS  Google Scholar 

  12. Elfaydy M, Touir R, Ebn Touhami M, Zarrouk A, Jama C, Lakhrissi B, Olasunkanmi LO, Ebenso EE, Bentiss F (2018) Corrosion inhibition performance of newly synthesized 5-alkoxymethyl-8-hydroxyquinoline derivatives for carbon steel in 1 M HCl solution: experimental, DFT and Monte Carlo simulation studies. Phys Chem Chem Phys 20:20167–20187. https://doi.org/10.1039/C8CP03226B

    Article  CAS  Google Scholar 

  13. Dutta A, Saha SK, Adhikari U, Banerjee P, Sukul D (2017) Effect of substitution on corrosion inhibition properties of 2-(substituted phenyl) benzimidazole derivatives on mild steel in 1 M HCl solution: a combined experimental and theoretical approach. Corros Sci 123:256–266. https://doi.org/10.1016/j.corsci.2017.04.017

    Article  CAS  Google Scholar 

  14. Fergachi O, Benhiba F, Rbaa M, Ouakki M, Galai M, Touir R, Lakhrissi B, Oudda H, Touhami ME (2019) Corrosion inhibition of ordinary steel in 5.0 M HCl medium by benzimidazole derivatives: electrochemical, UV–visible spectrometry, and DFT calculations. J Bio- Tribo-Corros 5:1–13. https://doi.org/10.1007/s40735-018-0215-3

    Article  Google Scholar 

  15. Benali O, Larabi L, Traisnel M, Gengembre L, Harek Y (2007) Electrochemical, theoretical and XPS studies of 2-mercapto-1-methylimidazole adsorption on carbon steel in 1 M HClO 4. Appl Surf Sci 253:6130–6139. https://doi.org/10.1016/j.apsusc.2007.01.075

    Article  CAS  Google Scholar 

  16. Kabanda MM, Murulana LC, Ozcan M, Karadag F (2012) Quantum chemical studies on the corrosion inhibition of mild steel by some triazoles and benzimidazole derivatives in acidic medium. Int J Electrochem Sci 7:5035–5056

    Article  CAS  Google Scholar 

  17. Kaya S, Tüzün B, Kaya C, Obot IB (2016) Determination of corrosion inhibition effects of amino acids: quantum chemical and molecular dynamic simulation study. J Taiwan Inst Chem Eng 58:528–535. https://doi.org/10.1016/j.jtice.2015.06.009

    Article  CAS  Google Scholar 

  18. Oubaaqa M, Ouakki M, Rbaa M, Abousalem AS, Maatallah M, Benhiba F, Jarid A, Ebn Touhami M, Zarrouk A (2021) Insight into the corrosion inhibition of new amino-acids as efficient inhibitors for mild steel in HCl solution: experimental studies and theoretical calculations. J Mol Liq 334:116520. https://doi.org/10.1016/j.molliq.2021.116520

    Article  CAS  Google Scholar 

  19. El Ibrahimi B, Jmiai A, Bazzi L, El Issami S (2020) Amino acids and their derivatives as corrosion inhibitors for metals and alloys. Arab J Chem 13:740–771. https://doi.org/10.1016/j.arabjc.2017.07.013

    Article  CAS  Google Scholar 

  20. Kumar CB, Pradeep B, Mohana KN (2014) Corrosion inhibition efficiency and adsorption characteristics of some Schiff bases at mild steel/hydrochloric acid interface. J Taiwan Inst Chem Eng 45:1031–1042. https://doi.org/10.1016/j.jtice.2013.08.017

    Article  CAS  Google Scholar 

  21. El Basiony NM, Elgendy A, Nady H, Migahed MA, Zaki EG (2019) Adsorption characteristics and inhibition effect of two Schiff base compounds on corrosion of mild steel in 0.5 M HCl solution: experimental DFT studies, and Monte Carlo simulation. RSC Adv 9:10473–10485. https://doi.org/10.1039/c9ra00397e

    Article  CAS  Google Scholar 

  22. Karzazi Y, Beighiti M, Dafali A, Hammouti B (2014) Theoretical investigation of mild steel by piperidine derivatives in hydrochloric acid solution. J Chem Pharm Res 6:689–696. https://doi.org/10.1016/j.corsci.2008.06.020

    Article  CAS  Google Scholar 

  23. Behpour M, Ghoreishi SM, Soltani N, Salavati-Niasari M, Hamadanian M, Gandomi A (2008) Electrochemical and theoretical investigation on the corrosion inhibition of mild steel by thiosalicylaldehyde derivatives in hydrochloric acid solution. Corros Sci 50:2172–2181. https://doi.org/10.1016/j.corsci.2008.06.020

    Article  CAS  Google Scholar 

  24. Alaoui K, Touir R, Galai M, Serrar H, Ouakki M, Kaya S, Tüzün B, Boukhris S, Ebn Touhami M, El Kacimi Y (2018) Electrochemical and computational studies of some triazepine carboxylate compounds as acid corrosion inhibitors for mild steel. J Bio- Tribo-Corros. https://doi.org/10.1007/s40735-018-0154-z

    Article  Google Scholar 

  25. Alaoui K, Ouakki M, Abousalem AS, Serrar H, Galai M, Derbali S, Nouneh K, Boukhris S, Touhami ME, El Kacimi Y (2019) Molecular dynamics, monte-carlo simulations and atomic force microscopy to study the interfacial adsorption behaviour of some triazepine carboxylate compounds as corrosion inhibitors in acid medium. J Bio Tribo-Corros. https://doi.org/10.1007/s40735-018-0196-2

    Article  Google Scholar 

  26. Kandemirli F, Sagdinc S (2007) Theoretical study of corrosion inhibition of amides and thiosemicarbazones. Corros Sci 49:2118–2130. https://doi.org/10.1016/j.corsci.2006.10.026

    Article  CAS  Google Scholar 

  27. Idouhli R, N’Ait Ousidi A, Koumya Y, Abouelfida A, Benyaich A, Auhmani A, Ait Itto MY (2018) Electrochemical studies of monoterpenic thiosemicarbazones as corrosion inhibitor for steel in 1 M HCl. Int J Corros 1155:1–15. https://doi.org/10.1155/2018/9212705

    Article  CAS  Google Scholar 

  28. Nazeer AA, Shalabi K, Fouda AS (2015) Corrosion inhibition of carbon steel by Roselle extract in hydrochloric acid solution: electrochemical and surface study. Res Chem Intermed 41:4833–4850. https://doi.org/10.1007/s11164-014-1570-4

    Article  CAS  Google Scholar 

  29. Verma C, Ebenso EE, Bahadur I, Quraishi MA (2018) An overview on plant extracts as environmental sustainable and green corrosion inhibitors for metals and alloys in aggressive corrosive media. J Mol Liq 266:577–590. https://doi.org/10.1016/j.molliq.2018.06.110

    Article  CAS  Google Scholar 

  30. Verma C, Ebenso EE, Bahadur I, Quraishi MA (2018) An overview on plant extracts as environmental sustainable and green corrosion inhibitors for metals and alloys in aggressive corrosive media. J Mol Liq 266:565–573. https://doi.org/10.1016/j.molliq.2018.02.045

    Article  CAS  Google Scholar 

  31. Palaniappan N, Cole I, Caballero-Briones F, Manickam S, Justin Thomas KR, Santos D (2020) Experimental and DFT studies on the ultrasonic energy-assisted extraction of the phytochemicals of: catharanthus roseus as green corrosion inhibitors for mild steel in NaCl medium. RSC Adv 10:5399–5411. https://doi.org/10.1039/c9ra08971c

    Article  CAS  Google Scholar 

  32. Idouhli R, Oukhrib A, Khadiri M, Zakir O, Aityoub A, Abouelfida A, Benharref A, Benyaich A (2021) Understanding the corrosion inhibition effectiveness using Senecio anteuphorbium L fraction for steel in acidic media. J Mol Struct 1228:129478. https://doi.org/10.1016/j.molstruc.2020.129478

    Article  CAS  Google Scholar 

  33. Kadiri L, Galai M, Ouakki M, Essaadaoui Y, Ouass A, Cherkaoui M, Rifi EH, Lebkiri A (2018) Coriandrum Sativum. L seeds extract as a novel green corrosion inhibitor for mild steel in 1.0 M hydrochloric and 0.5 M sulfuric solutions. Anal Bioanal Electrochem 10(2):249–268

    CAS  Google Scholar 

  34. Lazrak J, Ech-chihbi E, Salim R, Saffaj T, Rais Z, Taleb M (2023) Insight into the corrosion inhibition mechanism and adsorption behavior of aldehyde derivatives for mild steel in 10 M HCl and 05 M H2SO4. Colloids and Surf A: Physicochem Eng Aspects 664:131148

    Article  CAS  Google Scholar 

  35. Li B, Wang W, Chen L, Zheng X, Gong M, Fan J, Tang L, Shi Q, Zhu G (2023) Corrosion inhibition effect of magnolia grandiflora leaves extract on mild steel in acid solution. Int J Electrochem Sci 18(4):100082

    Article  Google Scholar 

  36. Dagdag O, Safi Z, Hsissou R, Erramli H, El Bouchti M, Wazzan N, Guo L, Verma C, Ebenso EE, El Harfi A (2019) Epoxy pre-polymers as new and effective materials for corrosion inhibition of carbon steel in acidic medium: computational and experimental studies. Sci Rep 9:14. https://doi.org/10.1038/s41598-019-48284-0

    Article  CAS  Google Scholar 

  37. Ouakki M, Galai M, Rbaa M, Abousalem AS, Lakhrissi B, Rifi EH, Cherkaoui M (2019) Quantum chemical and experimental evaluation of the inhibitory action of two imidazole derivatives on mild steel corrosion in sulphuric acid medium. Heliyon. https://doi.org/10.1016/j.heliyon.2019.e02759

    Article  Google Scholar 

  38. Galai M, Rbaa M, Ouakki M, Guo L, Dahmani K, Nouneh K, Briche S, Lakhrissi B, Dkhireche N, Ebn Touhami M (2021) Effect of alkyl group position on adsorption behavior and corrosion inhibition of new naphthol based on 8-hydroxyquinoline: electrochemical, surface, quantum calculations and dynamic simulations. J Mol Liq 335:116552. https://doi.org/10.1016/j.molliq.2021.116552

    Article  CAS  Google Scholar 

  39. Rbaa M, Bazdi O, Lakhrissi Y, Ounine K, Lakhrissi B (2018) Synthesis, characterization and biological activity of new pyran derivatives of 8-hydroxyquinoline, Eurasian. J Anal Chem 13:19–30

    CAS  Google Scholar 

  40. Mulakayala N, Murthy PVNS, Rambabu D, Aeluri M, Raju Adepu GR, Krishna Reddy CM et al (2012) Catalysis by molecular iodine: a rapid synthesis of 1, 8-dioxo-octahydroxanthenes and their evaluation as potential anticancer agents. Bioorg Med Chem Lett 22(6):2186–2191

    Article  CAS  Google Scholar 

  41. Oubaaqa M, Rbaa M, Ouakki M, Idouhli R, Maatallah M, Jarid A, Warad I, Abousalem AS, Lakhrissi B, Zarrouk A, Ebn Touhami M (2021) Novel triphenyl imidazole based on 8-hydroxyquinoline as corrosion inhibitor for mild steel in molar hydrochloric acid: experimental and theoretical investigations. J Appl Electrochem. https://doi.org/10.1007/s10800-021-01632-3

    Article  Google Scholar 

  42. Ouakki M, Rbaa M, Galai M, Lakhrissi B, Rifi EH, Cherkaoui M (2018) Experimental and quantum chemical investigation of imidazole derivatives as corrosion inhibitors on mild steel in 1.0 M hydrochloric acid. J Bio- Tribo-Corros 4:2–14. https://doi.org/10.1007/s40735-018-0151-2

    Article  Google Scholar 

  43. Rbaa M, Benhiba F, Obot IB, Oudda H, Warad I, Lakhrissi B, Zarrouk A (2019) Two new 8-hydroxyquinoline derivatives as an efficient corrosion inhibitors for mild steel in hydrochloric acid: synthesis, electrochemical, surface morphological, UV–visible and theoretical studies. J Mol Liq 276:120–133. https://doi.org/10.1016/j.molliq.2018.11.104

    Article  CAS  Google Scholar 

  44. Ouakki M, Galai M, Benzekri Z, Aribou Z, Ech-chihbi E, Guo L, Dahmani K, Nouneh K, Briche S, Boukhris S, Cherkaoui M (2021) A detailed investigation on the corrosion inhibition effect of by newly synthesized pyran derivative on mild steel in 1.0 M HCl: experimental, surface morphological (SEM-EDS, DRX& AFM) and computational analysis (DFT & MD simulation). J Mol Liq 344:117777. https://doi.org/10.1016/j.molliq.2021.117777

    Article  CAS  Google Scholar 

  45. Islam N, Kaya S (2021) Conceptual density functional theory and its application in the chemical domain. CRC Press

  46. Kaya S, Banerjee P, Saha SK, Tüzün B, Kaya C (2016) Theoretical evaluation of some benzotriazole and phospono derivatives as aluminum corrosion inhibitors: DFT and molecular dynamics simulation approaches. RSC Adv 6:74550–74559

    Article  CAS  Google Scholar 

  47. Parr RG, Szentpaly LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  48. Gazquez JL, Cedillo A, Vela A (2007) Electrodonating and electroaccepting powers. J Phys Chem A 111:1966–1970

    Article  CAS  Google Scholar 

  49. Gómez B, Likhanova NV, Domínguez-Aguilar MA, Martínez-Palou R, Vela A, Gazquez JL (2006) Quantum chemical study of the inhibitive properties of 2-pyridyl-azoles. J Phys Chem B 110:8928–8934

    Article  Google Scholar 

  50. Kaya S, Kaya C (2015) A new equation based on ionization energies and electron affinities of atoms for calculating of group electronegativity. Comput Theor Chem 1052:42–46

    Article  CAS  Google Scholar 

  51. Obot IB, Kaya S, Kaya C, Tuzun B (2016) Density functional theory (DFT) modeling and Monte Carlo simulation assessment of inhibition performance of some carbohydrazide Schiff bases for steel corrosion. Phys E Low-Dimensional Syst Nanostruct 80:82–90

    Article  CAS  Google Scholar 

  52. Guo L, Kaya S, Obot IB, Zheng X, Qiang Y (2017) Toward understanding the anticorrosive mechanism of some thiourea derivatives for carbon steel corrosion: a combined DFT and molecular dynamics investigation. J Colloid Interf Sci 506:478–485. https://doi.org/10.1016/j.jcis.2017.07.082

    Article  CAS  Google Scholar 

  53. Saranya J, Benhiba F, Anusuya N, Zarrouk A, Chitra S (2020) Thiazolo thiadiazole derivatives as anti-corrosion additives for acid corrosion. Chem Data Collect 26:1–20. https://doi.org/10.1016/j.cdc.2020.100358

    Article  CAS  Google Scholar 

  54. Rbaa M, Galai M, El Faydy M, El Kacimi Y (2017) Analytical & bioanalytical electrochemistry. Anal Bioanal Electrochem 9:904–928

    CAS  Google Scholar 

  55. Mahdi BS, Abbass MK, Mohsin MK, Al-Azzawi WK, Hanoon MM, Al-Kaabi MHH, Shaker LM et al (2022) Corrosion inhibition of mild steel in hydrochloric acid environment using terephthaldehyde based on Schiff base: Gravimetric, thermodynamic, and computational studies. Molecules 27(15):4857

    Article  CAS  Google Scholar 

  56. Popova A, Christov M (2005) Evaluation of impedance measurements on mild steel corrosion in acidmedia in the presence of heterocyclic compounds. Corros Sci 48:3208–3221

    Article  Google Scholar 

  57. Xu B, Yang W, Liu Y, Yin X, Gong W, Chen Y (2014) Experimental and theoretical evaluation of two pyridinecarboxaldehyde thiosemicarbazone compounds as corrosion inhibitors for mild steel in hydrochloric acid solution. Corros Sci 78:260–268. https://doi.org/10.1016/j.corsci.2013.10.007

    Article  CAS  Google Scholar 

  58. RbaaM GM, BenhibaF OIB, OuddaH ET, Zarrouk A (2018) Synthesis and investigation of quinazoline derivatives based on 8-hydroxyquinoline as corrosion inhibitors for mild steel in acidic environment: experimental and theoretical studies. Ionics 2(25):1–19

    Google Scholar 

  59. Singh P, Ebenso EE, Olasunkanmi LO, Obot IB, Quraishi MA (2016) Electrochemical, theoretical, and surface morphological studies of corrosion inhibition effect of green naphthyridine derivatives on mild steel in hydrochloric acid. J Phys Chem C 120:3408–3419. https://doi.org/10.1021/acs.jpcc.5b11901

    Article  CAS  Google Scholar 

  60. Galai M, Ouassir J, EbnTouhami M, Nassali H, Benqlilou H, Belhaj T, Berrami K, Mansouri I, Oauki B (2017) α-Brass and (α+ β) brass degradation processes in AzrouSoil medium used in plumbing devices. J Bio- Tribo-Corros 3:30

    Article  Google Scholar 

  61. Haque J, Verma C, Srivastava V, Quraishi MA, Ebenso EE (2018) Experimental and quantum chemical studies of functionalized tetrahydropyridines as corrosion inhibitors for mild steel in 1 M hydrochloric acid. Results Phys 9:1481–1493. https://doi.org/10.1016/j.rinp.2018.04.069

    Article  Google Scholar 

  62. Galai M, Rbaa M, Serrar H, Ouakki M, Ech-chebab A, Abousalem Ashraf S, Ech-chihbi E, Dahmani K, Boukhris S, Zarrouk A, EbnTouhami M (2021) S-Thiazine as effective inhibitor of mild steel corrosion in HCl solution: synthesis, experimental, theoretical and surface assessment. Colloids Surf A: Physicochem Eng Aspects 613:126127

    Article  CAS  Google Scholar 

  63. Maleki B, Davoodi A, Azghandi MV, Akbarzadeh E, Baghayeri M, Veisi H, Ashrafi SS, Raei M (2016) Facile synthesis and investigation of 1, 8-dioxooctahydroxanthene derivatives as corrosion inhibitors for mild steel in hydrochloric acid solution. New J Chem 40(2):1278–1286

    Article  CAS  Google Scholar 

  64. Arrousse N, Salim R, Abdellaoui A, El Hajjaji F, BelkheirHammouti EH, Mabrouk WA, Dino MT (2021) Synthesis, characterization, and evaluation of xanthene derivative as highly effective, nontoxic corrosion inhibitor for mild steel immersed in 1 M HCl solution. J Taiwan Institute Chem Eng 120:344–359

    Article  CAS  Google Scholar 

  65. Arrousse N, Salim R, Obot IB, Abdellaoui A, El Hajjaji F, Mabrouk E, Taleb M (2022) Effect of the molecular structure of two fluorescein molecules on the corrosion inhibition of mild steel in 1 M HCl solution. J Mol Liq 359:119311

    Article  CAS  Google Scholar 

  66. Ambrish Singh KR, Ansari PB, Pramanik T, Ali IH, Lin Y, Banerjee P, Zamindar S (2023) Understanding xanthone derivatives as novel and efficient corrosion inhibitors for P110 steel in acidizing fluid: experimental and theoretical studies. J Phys Chem Solids 172:111064

    Article  Google Scholar 

  67. Obot B, Obi-Egbedi NO (2011) Anti-corrosive properties of xanthone on mild steel corrosion in sulphuric acid: experimental and theoretical investigations. Curr Appl Phys 11:382–392

    Article  Google Scholar 

  68. Khalifa ME, El Azab IH, Gobouri AA, Mersal GAM, Alharthi S, Saracoglu M, Kandemirli F, Ryl J, Amin MA (2020) Adsorption behavior and corrosion inhibitive characteristics of newly synthesized cyano-benzylidene xanthenes on copper/sodium hydroxide interface: Electrochemical, X-ray photoelectron spectroscopy and theoretical studies. J Colloid Interf Sci 580:108–125

    Article  CAS  Google Scholar 

  69. Noor EA (2007) Temperature effects on the corrosion inhibition of mild steel in acidic solutions by aqueous extract of fenugreek leaves. Int J Electrochem Sci 2:996–1017

    Article  CAS  Google Scholar 

  70. Lgaz H, Salghi R, Subrahmanya Bhat K, Chaouiki A, Shubhalaxmi S. Jodeh (2017) Correlated experimental and theoretical study on inhibition behavior of novel quinoline derivatives for the corrosion of mild steel in hydrochloric acid solution. J Liq Mol. https://doi.org/10.1016/j.molliq.2017.08.121

    Article  Google Scholar 

  71. Bockris JOM, Reddy AK, Gamboa-Aldeco M (1998) Modern electrochemistry: an introduction to an interdisciplinary area. Plenum Press, New York

    Book  Google Scholar 

  72. Idouhli R, Oukhrib A, Koumya Y, Abouelfida A, Benyaich A, Benharref A (2018) Inhibitory effect of Atlas cedar essential oil on the corrosion of steel in 1 m HCl. Corros Rev 36:373–384. https://doi.org/10.1515/corrrev-2017-0076

    Article  CAS  Google Scholar 

  73. Xu B, Liu Y, Yin X, Yang W, Chen Y (2013) Experimental and theoretical study of corrosion inhibition of 3-pyridinecarbozalde thiosemicarbazone for mild steel in hydrochloric acid. Corros Sci 74:206–213

    Article  CAS  Google Scholar 

  74. Yıldız R (2015) An electrochemical and theoretical evaluation of 4,6-diamino-2-pyrimidinethiol as a corrosion inhibitor for mild steel in HCl solutions. Corros Sci 90:544–553

    Article  Google Scholar 

  75. Ashassi-Sorkhabi H, Shaabani B, Seifzadeh D (2005) Corrosion inhibition of mild steel by some schiff base compounds in hydrochloric acid. Appl Surf Sci 239:154–164

    Article  CAS  Google Scholar 

  76. Ouakki M, Galai M, Rbaa M, Abousalem AS, Lakhrissi B, EbnTouhami M, Cherkaoui M (2020) Electrochemical, thermodynamic, and theoretical studies of some imidazole derivatives compound as acid corrosion inhibitors for mild steel. J Mol Liq 319:114063

    Article  CAS  Google Scholar 

  77. Elqars E, Guennoun M, Houssini NS, Thoume A, Mechnou I, Essadki A, Nbigui T (2021) The adsorption performance of chicken excrement extract as corrosion inhibition of carbon steel in a 1 M HCl medium. J Bio-and Tribo-Corros 7:1–12

    Google Scholar 

  78. Galai M, Rbaa M, Ouakki M, Abousalem AS, Ech-chihbi E, Dahmani K, Dkhireche N, Lakhrissi B, EbnTouhami M (2020) Chemically functionalized of 8-hydroxyquinoline derivatives as efficient corrosion inhibition for steel in 10 M HCl solution: experimental and theoretical studies. Surf Interf 21:100695

    Article  CAS  Google Scholar 

  79. Asadi N, Ramezanzadeh M, Bahlakeh G, Ramezanzadeh B (2019) Utilizing lemon balm extract as an effective green corrosion inhibitor for mild steel in 1M HCl solution: a detailed experimental, molecular dynamics, Monte Carlo and quantum mechanics study. J Taiwan Inst Chem Eng 95:252–272. https://doi.org/10.1016/j.jtice.2018.07.011

    Article  CAS  Google Scholar 

  80. Verma C, Quraishi MA, Obot IB, Ebenso EE (2019) Effect of substituent dependent molecular structure on anti-corrosive behavior of one-pot multicomponent synthesized pyrimido [2,1-B] benzothiazoles: computer modelling supported experimental studies. J Mol Liq 287:110972. https://doi.org/10.1016/j.molliq.2019.110972

    Article  CAS  Google Scholar 

  81. Abboud Y, Tanane O, El Bouari A, Salghi R, Hammouti B, Chetouani A, Jodeh S (2016) Corrosion inhibition of carbon steel in hydrochloric acid solution using pomegranate leave extracts. Corros Eng, Sci Technol 51(8):557–565

    CAS  Google Scholar 

  82. Melhi S, Bedair MA, Alosaimi EH, Younes AAO, El-Shwiniy WH, Abuelela AM (2022) Effective corrosion inhibition of mild steel in hydrochloric acid by newly synthesized Schiff base nano Co (ii) and Cr (iii) complexes: spectral, thermal, electrochemical and DFT (FMO, NBO) studies. RSC adv 12(50):32488–32507

    Article  CAS  Google Scholar 

  83. Dutta A, Saha SK, Banerjee P, Sukul D (2015) Correlating electronic structure with corrosion inhibition potentiality of some bis-benzimidazole derivatives for mild steel in hydrochloric acid: combined experimental and theoretical studies. Corros Sci 98:541–550. https://doi.org/10.1016/j.corsci.2015.05.065

    Article  CAS  Google Scholar 

  84. Kaya S, Kaya C (2015) A new equation for calculation of chemical hardness of groups and molecules. Mol Phys 113:1311–1319. https://doi.org/10.1080/00268976.2014.991771

    Article  CAS  Google Scholar 

  85. Kaya S, Kaya C (2015) A new method for calculation of molecular hardness: a theoretical study, Comput. Theor Chem 1060:66–70. https://doi.org/10.1016/j.comptc.2015.03.004

    Article  CAS  Google Scholar 

  86. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539. https://doi.org/10.1021/ja00905a001

    Article  CAS  Google Scholar 

  87. Kaya S, Kaya C (2015) A simple method for the calculation of lattice energies of inorganic ionic crystals based on the chemical hardness. Inorg Chem 54:8207–8213. https://doi.org/10.1021/acs.inorgchem.5b00383

    Article  CAS  Google Scholar 

  88. Ghanty TK, Ghosh SK (1993) Correlation between hardness, polarizability, and size of atoms, molecules, and clusters. J Phys Chem 97:4951–4953. https://doi.org/10.1021/j100121a015

    Article  CAS  Google Scholar 

  89. Chattaraj PK, Sengupta S (1996) Popular electronic structure principles in a dynamical context. J Phys Chem 100:16126–16130. https://doi.org/10.1021/jp961096f

    Article  CAS  Google Scholar 

  90. Von Szentpaly L, Kaya S, Karakus N (2020) Why and when is electrophilicity minimized, new theorems and guiding rules. J Phys Chem A 124:10897–10908. https://doi.org/10.1021/acs.jpca.0c08196

    Article  CAS  Google Scholar 

  91. Boughoues Y, Benamira M, Messaadia L, Ribouh N (2020) Adsorption and corrosion inhibition performance of some environmental friendly organic inhibitors for mild steel in HCl solution via experimental and theoretical study. Colloids Surf A Physicochem. Eng. Asp. 593:124610. https://doi.org/10.1016/j.colsurfa.2020.124610

    Article  CAS  Google Scholar 

  92. Popova A, Christov M, Raicheva S, Sokolova E (2004) Adsorption and inhibitive properties of benzimidazole derivatives in acid mild steel corrosion. Corros Sci 46:1333–1350. https://doi.org/10.1016/j.corsci.2003.09.025

    Article  CAS  Google Scholar 

  93. Chandrabhan Verma LO, Olasunkanmi EE, Ebenso MAQ (2018) Substituents effect on corrosion inhibition performance of organic compounds in aggressive ionic solutions: a review. Journal of Molecular Liquids 251:100–118

    Article  Google Scholar 

Download references

Funding

The authors received no direct funding for this research article.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by KD, MG, MO, ZB, MO, Rl, SK, SB, and NB. The first draft of the manuscript was written by SB and MET, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to M. Galai.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 587 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galai, M., Touhami, M.E., Oubaaqa, M. et al. Electrochemical, Characterization, and Quantum Chemical Studies of Two Newly Synthesized Aromatic Aldehydes-Based Xanthene Diones as Corrosion Inhibitors for Mild Steel in 1 M Hydrochloric Acid. J Bio Tribo Corros 9, 63 (2023). https://doi.org/10.1007/s40735-023-00778-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-023-00778-1

Keywords

Navigation