Skip to main content
Log in

DFT study of new bipyrazole derivatives and their potential activity as corrosion inhibitors

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In the present work, a theoretical study of five bipyrazolic-type organic compounds, 4-{bis[(3,5-dimethyl-1H-pyrazolyl-1-yl)methyl]-amino}phenol (1), N1,N1-bis[(3,5-dimethyl-1H-pyrazol-1-yl)methyl}]-N4,N4-dimethyl-1,4-benzenediamine (2), N,N-bis[(3,5-dimethyl-1H-pyrazol-1-yl)methyl]aniline (3), 4-[bis(3,5-dimethyl pyrazol-1-yl-methyl)-amino]butan-1-ol (4) and ethyl4-[bis(3,5-dimethyl-1H-pyrazol-1-yl-methyl) aminobenzoate] (5), has been performed using density functional theory (DFT) at the B3LYP/6-31G(d) level in order to elucidate the different inhibition efficiencies and reactive sites of these compounds as corrosion inhibitors. The efficiencies of corrosion inhibitors and the global chemical reactivity relate to some parameters, such as EHOMO, ELUMO, gap energy (ΔE) and other parameters, including electronegativity (χ), global hardness (η) and the fraction of electrons transferred from the inhibitor molecule to the metallic atom (ΔN). The calculated results are in agreement with the experimental data on the whole. In addition, the local reactivity has been analyzed through the Fukui function and condensed softness indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sastri VS (1998) Corrosion inhibitors—principles and applications. Wiley, Chichester, England

    Google Scholar 

  2. Growcock FB (1989) Corrosion 45:1003–1007

    CAS  Google Scholar 

  3. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, MonTgomery JA, Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (2003) Gaussian 03, Revision B.05. Gaussian Inc., Pittsburgh

    Google Scholar 

  4. Tebbji K, Aouniti A, Benkaddour M, Oudda H, Bouabdallah I, Hammouti B, Ramdani A (2005) Prog Org Coat 54:170–174

    Article  CAS  Google Scholar 

  5. Elayyachy M, Elkodadi M, Aouniti A, Ramdani A, Hammouti B, Malek F, Elidrissi A (2005) Mater Chem Phys 93:281–285

    Article  CAS  Google Scholar 

  6. Tebbji K, Oudda H, Hammouti B, Benkaddour M, El kodadi M, Malek F, Ramdani A (2005) Appl Surf Sci 241:326–334

    Article  CAS  Google Scholar 

  7. Lopez N, Illas F, Phys J (1998) Chem B102:1430–1436

    Google Scholar 

  8. Lee C, Yang W, Parr RG (1988) Phys Rev B37:785–789

    Google Scholar 

  9. Ignaczak A, Gomes JANF (1996) Chem Phys Lett 257:609–615

    Article  CAS  Google Scholar 

  10. Lashkari M, Arshadi MR (2004) Chem Phys 299:131–137

    Article  CAS  Google Scholar 

  11. Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801–3807

    Article  CAS  Google Scholar 

  12. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  13. Yang W, Parr RG (1985) Proc Natl Acad Sci USA 82:6723–6726

    Article  CAS  Google Scholar 

  14. Parr RG, Yang W (1984) J Am Chem Soc 106:4049–4050

    Article  CAS  Google Scholar 

  15. Yang W, Mortier WJ (1986) J Am Chem Soc 108:5708–5711

    Article  CAS  Google Scholar 

  16. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  17. Lee C, Yang W, Parr RG (1988) Phys Rev B37:785–789

    Google Scholar 

  18. de Proft F, Martin JML, Geerlings P (1996) Chem Phys Lett 256:400–408

    Article  Google Scholar 

  19. Fukui K, Yonezawa T, Shingu H (1952) J Chem Phys 20:722–725

    Article  CAS  Google Scholar 

  20. Hackerman N, Snavely Jr E, Payne Jr JS (1966) J Appl Electrochem 113:677–681

    CAS  Google Scholar 

  21. Sastri VS, Perumareddi JR (1997) Corros Sci 53:617–622

    CAS  Google Scholar 

  22. Ögretir C, Mihçi B, Bereket G (1999) J Mol Struct: Theochem 488:223–231

    Article  Google Scholar 

  23. Lukovits I, Kálmán E, Zucchi F (2001) Corrosion 57:3–8

    Article  CAS  Google Scholar 

  24. Khalil N (2003) Electrochim Acta 48:2635–2640

    Article  CAS  Google Scholar 

  25. Lukovits I, Pálfi K, Bakó I, Kálmán E (1997) Corrosion 53:915–919

    CAS  Google Scholar 

  26. Pearson RG (1988) Inorg Chem 27:734–740

    Article  CAS  Google Scholar 

  27. Pearson RG (1963) J Am Chem Soc 85:3533–3539

    Article  CAS  Google Scholar 

  28. Dewar MJS, Thiel W (1977) J Am Chem Soc 99:4899–4907

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author wishes to acknowledge financial support from the Scientific Research Fund of Hunan Provincial Education Department (no. 05A002), the Prominent Mid-youth Science and Technology Foundation of Hunan Province (grant no. 04JJ1010), and the Cross Project of Xiangtan University (no. 05IND07) for the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueye Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Wang, X., Wang, H. et al. DFT study of new bipyrazole derivatives and their potential activity as corrosion inhibitors. J Mol Model 13, 147–153 (2007). https://doi.org/10.1007/s00894-006-0135-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-006-0135-x

Keywords

Navigation