Skip to main content
Log in

An overview on the recent advances in the transesterification of vegetable oils for biodiesel production using chemical and biocatalysts

  • Reviews
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Biodiesel, chemically defined as monoalkyl esters of long chain fatty acids, are derived from renewable feed stocks like vegetable oils and animal fats. It is produced by both batch and continuous transesterification processes in which, oil or fat is reacted with a monohydric alcohol in the presence of a catalyst. The conventional method of producing biodiesel involves acid and base catalysts to form fatty acid alkyl esters. Downstream processing costs and environmental problems associated with biodiesel production and byproducts recovery have led to the search for alternative production methods and alternative substrates. Enzymatic reactions involving lipases can be an excellent alternative to produce biodiesel through a process commonly referred to as alcoholysis, a form of transesterification reaction or through an interesterification reaction. In order to increase the cost effectiveness of the process, the enzymes are immobilized using a suitable matrix. The use of immobilized lipases and whole cells may lower the overall cost, while presenting less downstream processing problems. Main focus of this paper is to discuss the important parameters that affect the biodiesel yield, various immobilization techniques employed, mechanisms and kinetics of transesterification reaction and the recent advances in continuous transesterification processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcantara R, Amores J, Canoira L, Fidalgo E, Franco MJ, Navarro A (2000) Catalytic production of biodiesel from soybean oil, used frying oil and tallow. Biomass Bioenergy 18:515–527

    CAS  Google Scholar 

  • Al-Zuhair S, Jayaraman KV, Krishnan S, Chan W-H (2006) The effect of fatty acid concentration and water content on the production of biodiesel by lipase. Biochem Eng J 30(2):212–217

    CAS  Google Scholar 

  • Anja EM, Sjursnes JPJ, Vakurov AV, Halling PJ (1999) Kinetics of lipase-catalyzed esterification in organic media: correct model and solvent effects on parameters. Enzyme Microb Technol 24:463–470

    Google Scholar 

  • Antolin G, Tinaut FV, Briceno Y, Cartano V, Perez C, Ramirez AI (2002) Optimization of biodiesel production by sunflower oil transesterification. Bioresour Technol 83(2):111–114

    CAS  Google Scholar 

  • Atkinson B, Black GM, Lewis PJS, Pinches A (1979) Biological particles of given size, shape, and density for use in biological reactors. Biotechnol Bioeng 21(2):193–200

    Google Scholar 

  • Bala BK (2005) Studies on biodiesels from transportation of vegetable oils for diesel engines. Energy Edu Sci Technol 15:1–45

    CAS  Google Scholar 

  • Ban K, Kaida M, Matsumoto T, Kondo A, Fukuda H (2001) Whole cell biocatalyst for biodiesel fuel production utilizing Rhizopus oryzae cells immobilized within biomass support particles. Biochem Eng J 8(1):39–43

    CAS  Google Scholar 

  • Ban K, Hama S, Nishizuka K, Kaieda M, Matsumoto T, Kondo A, Noda H, Fukuda H (2002) Repeated use of whole cell biocatalysts immobilized within biomass support particles for biodiesel fuel production. J Mol Catal B: Enzym 17:157–165

    CAS  Google Scholar 

  • Barnwal BK, Sharma MP (2005) Prospects of biodiesel production from vegetable oils in India. Ren Sust Energy Rev 9(4):363–378

    Google Scholar 

  • Basu HN, Norris ME (1996) Process for production of esters for use as a diesel fuel substitute using a non-alkaline catalyst. US patent 5525126

  • Bornscheuer UT, Kazlauskas RJ (1999) Hydrolases in organic synthesis. Wiley-VCH, Weinhein (Germany)

    Google Scholar 

  • Bosley A, Pielow A (1997) Immobilization of lipases on porous polypropylene: reduction in esterification efficiency at low loading. J Am Oil Chem Soc 74(1):107–111

    CAS  Google Scholar 

  • Briceno Y (1999) Obtencion de biogasoleo mediante la transesterification del aceite de girasol. Ph.D. Thesis, Higher Industrial Engineering Collage, University of Valladolid (Chap. 8)

  • Canakci M, Van Gerpen J (1999) Biodiesel production via acid catalysis. Trans ASAE 42(3):1203–1210

    CAS  Google Scholar 

  • Cao P, Dube MA, Tremblay AY (2008a) High purity fatty acid methyl ester production from canola, soybean, palm, and yellow grease lipids by means of a membrane reactor. Biomass Bioenergy 32(11):1028–1036

    CAS  Google Scholar 

  • Cao P, Dube MA, Tremblay AY (2008b) Methanol recycling in the production of biodiesel in a membrane reactor. Fuel 87:825–833

    CAS  Google Scholar 

  • Chen JW, Wu WT (2003) Regeneration of immobilized Candida antarctica lipase for transesterification. J Biosci Bioeng 95(5):466–469

    CAS  Google Scholar 

  • Chen X, Du W, Liu D (2008a) Response surface optimization of biocatalytic biodiesel production with acid oil. Biochem Eng J 40(3):423–429

    CAS  Google Scholar 

  • Chen X, Du W, Liu D, Ding F (2008b) Lipase mediated methanolysis of soybean oils for biodiesel production. J Chem Technol Biotechnol 83:71–76

    CAS  Google Scholar 

  • Demirbas A (2002) Biodiesel from vegetable oils via transesterification in supercritical methanol. Energy Convers Manage 43:2349–2356

    CAS  Google Scholar 

  • Demirbas A (2003) Biodiesel fuels from vegetable oils via catalytic and noncatalytic supercritical alcohol transesterification and other methods: a survey. Energy Convers Manage 44:2093–2109

    CAS  Google Scholar 

  • Demirbas A (2005) Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Prog Energy Combust Sci 31:466–487

    CAS  Google Scholar 

  • Deng L, Tan T, Wang F, Xu X (2003) Enzymatic production of fatty acid alkyl esters with a lipase preparation from Candida sp. 99–125. Eur J Lipid Sci Technol 105(12):727–734

    CAS  Google Scholar 

  • Domingos AK, Saad EB, Wilhelm HM, Ramos LP (2008) Optimization of the ethanolysis of Raphanus sativus (L. Var.) crude oil applying the response surface methodology. Bioresour Technol 99(6):1837–1845

    CAS  Google Scholar 

  • Dornako D, Munir C (2000) Kinetics of palm oil transesterification in a batch reactor. J Am Oil Chem Soc 77:1263–1267

    Google Scholar 

  • Dossat V, Combes D, Marty A (2002) Lipase catalyzed transestrification of high oleic sunflower oil. Enzyme Microb Technol 30(1):90–94

    CAS  Google Scholar 

  • Du W, Xu Y, Liu D (2003) Lipase-catalyzed transesterification of soybean oil for biodiesel production during continuous batch operation. Biotechnol Appl Biochem 38(2):103–106

    CAS  Google Scholar 

  • Encinar JM, Gonzalez JF, Reinares AR (2007) Ethanolysis of used frying oil. Biodiesel preparation and characterization. Fuel process Technol 88(5):513–522

    CAS  Google Scholar 

  • Feuge RO, Gros AT (1949) Modification of vegetable oils. VII. Alkali catalyzed interesterification of peanut oil with ethanol. J Am Oil Chem Soc 26(3):97–102

    CAS  Google Scholar 

  • Filliers R, Mlayah BB, Delmas M (1995) Ethanolysis of rapeseed oil: quantitation of ethyl esters, mono, di and triglycerides and glycerol by high performance size-exclusion chromatography. J Am Oil Chem Soc 72(4):427–432

    Google Scholar 

  • Formo MW (1954) Ester reactions of fatty materials. J Am Oil Chem Soc 31(11):548–559

    CAS  Google Scholar 

  • Freedman B, Pyrde EH, Mounts TL (1984) Variables affecting the yield of fatty esters from transesterified vegetable oils. J Am Oil Chem Soc 61(10):1638–1643

    CAS  Google Scholar 

  • Freedman B, Butterfield RO, Pyrde EH (1986) Transesterification kinetics of soybean oil. J Am Oil Chem Soc 63(10):1375–1380

    CAS  Google Scholar 

  • Funda Y, Kazan D, Nilgun AA (2007) Biodiesel production from waste oils by using lipase immobilized hydrotalcite and zeolites. Chem Eng J 134(1–3):262–267

    Google Scholar 

  • Furuta S, Matsuhashi H, Arata K (2006) Biodiesel fuel production with solid amorphous zirconia cataysis in fixed bed reactor. Biomass Bioenergy 30(10):870–873

    CAS  Google Scholar 

  • Gamba M, Lapis AAM, Dupont J (2008) Supported ionic liquid enzymatic catalysis for the production of biodiesel. Adv Synth Catal 350(1):160–164

    CAS  Google Scholar 

  • Gao Y, Tan WT, Nie KL, Wang F (2006) Immobilization of lipase on macroporus resin and its application in synthesis of biodiesel in low aqueous media. Chin J Biotech 22(1):114–118

    CAS  Google Scholar 

  • Garcia CM, Teixeira S, Marciniuk LL, Schuchadt U (2008) Transesterification of soybean oil catalyzed by sulfated Zirconia. Bioresour Technol 99(14):6608–6613

    CAS  Google Scholar 

  • Gerpan JV (2005) Biodiesel processing and production. Fuel Process Technol 86(10):1097–1107

    Google Scholar 

  • Ghadge SV, Raheman H (2006) Process optimization for biodiesel production from mahua (Madhuca indica) oil using response surface methodology. Bioresour Technol 97(3):379–384

    CAS  Google Scholar 

  • Goff MJ, Bauer NS, Lopes S, Sutterlin WR, Suppes GJ (2004) Acid-catalyzed alcoholysis of soybean oil. J Am Oil Chem Soc 81(4):415–420

    CAS  Google Scholar 

  • Guit RPM, Kloosterman M, Meindersma GW, Mayer M, Em Meijer (1991) Lipase kinetics: hydrolysis of triacetin by lipase from Candida cylindracea in a hallow fibre membrane reactor. Biochem Bioeng 38:727–732

    CAS  Google Scholar 

  • Gui-zhuan X, Bai-liang Z, Sheng-yong L, Jian-zhi Y (2006) Study on immobilized lipase catalyzed transesterification reaction of tung oil. Agri Sci China 5(1):859–864

    Google Scholar 

  • Ha SH, Lan MN, Lee SH, Hwang SM, Koo YM (2007) Lipase-catalyzed biodiesel production from soybean oil in ionic liquids. Enzyme Microb Technol 41(4):480–483

    CAS  Google Scholar 

  • Hama S, Yamaji H, Fukumizu T, Numata T, Tamalampudi S, Kondo A, Noda H, Fukuda H (2007) Biodiesel fuel production in a packed bed reactor using lipase producing Rhizopus oryzae cells immobilized within biomass support particles. Biochem Eng J 34(3):273–278

    CAS  Google Scholar 

  • Harrington KJ, Catherine DV (1985) A comparison of conventional and insitu methods of transesterification of seed oil from a series of sunflower cultivars. J Am Oil Chem Soc 62:1009–1013

    CAS  Google Scholar 

  • He XL, Chen BQ, Tan TW (2002) Enzymatic synthesis of 2-ethylhexyl esters of fatty acids by immobilized lipase from Candida sp 99–125. J Mol catal B: Enzym 18:333–339

    CAS  Google Scholar 

  • Iso M, Chen B, Eguchi M, Kudo T, Shrestha S (2001) Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase. J Mol Catal B: Enzym 16(1):53–58

    CAS  Google Scholar 

  • Janseen AEM, Vaidya AM, Halling PJ (1996) Substrate specificity and kinetics of Candida rugosa lipase in organic media. Enzyme Microbial Technol 18:340–346

    Google Scholar 

  • Jeromin L, Peukert E, Wollmann G (1987) Process for the preesterification of free fatty acids in fats and oils. US Patent 4698186

  • Kaieda M, Samukawa T, Matsumato T, Ban K, Kondo A, Shimada Y, Noda H, Nomoto F, Ohtsuka K, Izumoto E, Fukuda H (1999) Biodiesel fuel production from plant oil catalyzed by R. oryzae lipase in a water containing system with out an organic solvent. J Biosci Bioeng 88(6):627–631

    CAS  Google Scholar 

  • Karout A, Buission P, Perrard A, Pierre AC (2005) Shaping and mechanical reinforcement of silica aerogel biocatalysts with ceramic fibre felts. J Sol-Gel Sci Technol 36:163–171

    CAS  Google Scholar 

  • Kawashima A, Matsubara K, Honda K (2008) Development of heterogeneous base catalysts for biodiesel production. Bioresour Technol 99:3439–3443

    CAS  Google Scholar 

  • Knezevic ZD, Siler-Marinkovic SS, Mojovic LV (1998) Kinetics of lipase-catalyzed hydrolysis of palm oil in lecinthin/isooctane reversed micelles. Appl Microbiol Biotechnol 49:267–271

    CAS  Google Scholar 

  • Kose O, Tooter M, Aksoy HA (2002) Immobilized Candida antarctica lipase catalyzed alcoholysis of cotton seed oil in a solvent-free medium. Bioresour Technol 83:125–129

    Google Scholar 

  • Krishna SH, Karanth NG (2001) Lipase catalyzed synthesis of isoamyl butyrate: a kinetic study. Biochem Biophys Acta 1547(2):262–267

    Google Scholar 

  • Krishnangura K, Simamaharnnop K (1992) Continuous transmethylation of palm oil in an organic solvent. J Am Oil Chem Soc 69(2):166–169

    Google Scholar 

  • Kurzin AV, Evdokimov AN, Pavlova OS, Antipina VB (2007) Synthesis and characterization of biodiesel fuel based of esters of tall oil fatty acids. Russ J Appl Chem 80(5):842–845

    CAS  Google Scholar 

  • Kusdiana D, Saka S (2001a) Kinetics of transesterification in rapeseed oil to biodiesel fuel as treated in supercritical methanol. Fuel 80(5):693–698

    CAS  Google Scholar 

  • Kusdiana D, Saka S (2001b) Methyl esterification of free fatty acids of rapeseed oil as treated in supercritical methanol. J Chem Eng Jpn 34(3):383–387

    CAS  Google Scholar 

  • Kyotani S, Nakashima T, Izumoto E, Fukuda H (1991) Continuous interesterification of oils and fats using dried fungus immobilized in biomass support particles. J Ferment Bioeng 71(4):286–288

    CAS  Google Scholar 

  • Lai CC, Zullaikah S, Vali SR, Ju YH (2005) Lipase-catalyzed production of biodiesel from rice bran oil. J Chem Technol Biotechnol 80:331–337

    CAS  Google Scholar 

  • Li L, Du W, Liu D, Wang L, Li Z (2006) Lipase-catalyzed transesterification of rapeseed oils for biodiesel production with a novel organic solvent as the reaction medium. J Mol Catal B: Enzym 43(1–4):58–62

    CAS  Google Scholar 

  • Li W, Du W, Liu DH (2007) Rhizophus oryzae IFO 4697 whole cell catalyzed methanolysis of crude and acidified rapeseed oils for biodiesel production in tert-butanol system. Process Biochem 42:1481–1485

    CAS  Google Scholar 

  • Liu X, He H, Wang Y, Zhu S (2007) Transesterification of soybean oil to biodiesel using SrO as a solid base catalyst. Catal Commun 8(7):1107–1111

    CAS  Google Scholar 

  • Liu X, He H, Wang Y, Zhu S, Piao X (2008a) Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel 87(2):216–221

    CAS  Google Scholar 

  • Liu X, Piao X, Wang Y, Zhu S, He H (2008b) Calcium methoxide as a solid base catalyst for the transesterification of soybean oil to biodiesel with methanol. Fuel 87(7):1076–1082

    CAS  Google Scholar 

  • Lotero E, Liu Y, Lopez DE, Suwannakarn DA, Goodwin JG (2005) Synthesis of biodiesel via acid catalysis. Ind Eng Chem Res 4:5353–5363

    Google Scholar 

  • Lu J, Nie K, Xie F, Wang F, Tan T (2007) Enzymatic synthesis of fatty acid methyl esters from lard with immobilized Candida sp. 99–125. Process Biochem 42(9):1367–1370

    CAS  Google Scholar 

  • Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70:1–15

    CAS  Google Scholar 

  • Ma F, Clements LD, Hanna MA (1998a) The effect of mixing on transesterification of beef tallow. Bioresour Technol 69:289–293

    Google Scholar 

  • Ma F, Clements LD, Hanna MA (1998b) The effects of catalyst, free fatty acids and water on transesterification of beef tallow. Trans ASAE 41:1261–1264

    CAS  Google Scholar 

  • Macrae AR (1983) Lipase-catalyzed interesterification of oils and fats. J Am Oil Chem Soc 60:291–294

    CAS  Google Scholar 

  • Marchetti JM, Miguela VU, Errazua AF (2007) Possible methods for biodiesel production. Ren Sust Energy Rev 11:1300–1311

    CAS  Google Scholar 

  • Masjuki H, Sohif M (1991) Performance evaluation of palm oil diesel blends on small engine. J Energy, Heat Mass Transf 13:125–133

    Google Scholar 

  • Matsumoto T, Takahashi SA, Kaieda M, Leds M, Tanaka A, Fukuda H (2001) Yeast whole-cell biocatalyst constructed by intracellular overproduction of Rhizopus oryzae lipase applicable to biodiesel fuel production. Appl Microbiol Biotechnol 57:515–520

    CAS  Google Scholar 

  • Maury S, Buisson P, Perrard A, Pierre A (2005) Esterification kinetics of the lipase from Burkholderia cepacia either free or encapsulated in a silica aerogel. J Mol Catal B: Enzym 32:193–203

    CAS  Google Scholar 

  • Mcneff CV, Mcneff LC, Yan B, Nowlan DT, Rasmussen M, Gyberg AE, Krohn BJ, Fedie RL, Hoye TR (2008) A continuous catalytic system for biodiesel production. Appl Catal A General 343(1–2):39–48

    CAS  Google Scholar 

  • Meher LC, Vidyasagar D, Naik SN (2006) Technical aspects of biodiesel production by transesterification—a review. Ren Sust Energy Rev 10(3):248–268

    CAS  Google Scholar 

  • Mittelbach M (1990) Lipase catalyzed alcoholysis of sunflower oil. J Am Oil Chem Soc 67(3):168–170

    CAS  Google Scholar 

  • Modi MK, Reddy JRC, Rao BVSK, Prasad RBN (2007) Lipase-mediated conversion of vegetable oils into biodiesel using ethyl acetate as acyl acceptor. Bioresour Technol 98(6):1260–1264

    CAS  Google Scholar 

  • Mohamad IA, Ali OA (2002) Experimental evaluation of the transesterification of waste palm oil into biodiesel. Bioresour Technol 85:253–256

    Google Scholar 

  • Mu Y, Xiu Z-L, Zhang D-J (2008) A combined bioprocess of biodiesel production by lipase with microbial production of 1,3—propanediol by Klebsiella pneumoniae. Biochem Eng J 40(3):537–541

    CAS  Google Scholar 

  • Naik M, Meher LC, Naik SN, Das LM (2007) Production of biodiesel from high free fatty acid Karanja (Pongamia pinnata) oil. Biomass Bioenergy 32(4):354–357

    Google Scholar 

  • Nelson LA, Foglia TA, Marmer WW (1996) Lipase catalyzed production of biodiesel. J Am Oil Chem Soc 73(9):1191–1195

    CAS  Google Scholar 

  • Ngamcharussrivichai C, Totarat P, Bunyakiat K (2008) Ca and Zn mixed oxide as a heterogeneous base catalyst for transesterification of palm kernel oil. Appl catal A: Gen 341(1–2):77–85

    CAS  Google Scholar 

  • Ni J, Meunier FC (2007) Esterification of free fatty acids in sunflower oil over solid acid catalysts using batch and fixed bed reactors. Appl catal A: general 333(1):122–130

    CAS  Google Scholar 

  • Nie K, Xie F, Wang F, Tan T (2006) Liapse catalyzed methanolysis to produce biodiesel: optimization of the biodiesel production. J Mol Catal B: Enzym 43(1–4):142–147

    CAS  Google Scholar 

  • Noureddini H, Zhu D (1997) Kinetics of transesterification of soybean oil. J Am Oil Chem Soc 74(11):1457–1463

    CAS  Google Scholar 

  • Noureddini H, Gao X, Philkana RS (2005) Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour Technol 96(7):769–777

    CAS  Google Scholar 

  • Oliveira E, Quirino RL, Suarez PAZ, Prado AGS (2006) Heats of combustion of biofuels obtained by pyrolysis and by transesterification and biofuel/diesel blends. Thermochemica Acta 450:87–90

    Google Scholar 

  • Orcaire O, Buisson P, Pierre AC (2006) Application of silica aerogel encapsulated lipases in the synthesis of biodiesel by transesterification reactions. J Mol Catal B: Enzym 42(3–4):106–113

    CAS  Google Scholar 

  • Oznur K, Tuter M, Aksoy HA (2002) Immobilized Candida antarctica lipase-catalyzed alcoholysis of cotton seed oil in a solvent free medium. Bioresour Technol 83:125–129

    Google Scholar 

  • Peng XC, Peng QJ, Quyang YZ (1999) Synthesis of ethyl caproate catalyzed by ferric sulfate hydrate. Mod Chem Ind 19(1):26–27

    CAS  Google Scholar 

  • Rashid U, Anwar F (2008) Production of biodiesel through optimized alkaline-catalyzed transesterification of rapeseed oil. Fuel 87:265–273

    CAS  Google Scholar 

  • Rashid U, Anwar F, Moser BR, Ashraf S (2008) Production of sunflower oil methyl esters by optimized alkali-catalyzed methanolysis. Biomass Bioenergy 32(12):1202–1205

    CAS  Google Scholar 

  • Rodrigues RC, Volpato G, Ayub ANZ, Wada K (2008) Lipase-catalyzed ethanolysis of soybean oil in a solvent-free system using central composite design and response surface methodology. J Chem Technol Biotechnol 83(6):849–854

    CAS  Google Scholar 

  • Royon D, Daz M, Ellenrieder G, Locatelli S (2007) Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresour Technol 98(3):648–653

    CAS  Google Scholar 

  • Salis A, Pinna M, Monduzzi M, Solinas V (2003) Comparison among immobilized lipases on macroporous polypropylene toward biodiesel synthesis. J Mol Catal B: Enzym 54:19–26

    Google Scholar 

  • Salis A, Pinna M, Monduzzi M, Solinas V (2005) Biodiesel production from triolein and short chain alcohols through biocatalysis. J Biotechnol 119:291–299

    CAS  Google Scholar 

  • Salis A, Pinna M, Monduzzi M, Solinas V (2008) Comparison among immobilized lipases on macroporous polypropylene toward biodiesel synthesis. J Mol Catal B: Enzym 54(1–2):19–26

    CAS  Google Scholar 

  • Schwab AW, Bagby MO, Freedman B (1987) Preparation and properties of diesel fuels from vegetable oils. Fuel 66(10):1372–1378

    CAS  Google Scholar 

  • Selmi B, Thomas D (1998) Immobilized lipase-catalyzed ethanolysis of sunflower oil in a solvent free medium. J Am Oil Chem Soc 75(6):691–695

    CAS  Google Scholar 

  • Shah S, Gupta MN (2007) Lipase catalyzed preparation of biodiesel from jatropha oil in a solvent free system. Process Biochem 42(3):409–414

    CAS  Google Scholar 

  • Shah S, Sharma S, Gupta MN (2004) Biodiesel preparation by lipase-catalyzed transesterification of Jatropha oil. Energy Fuels 18(1):154–159

    CAS  Google Scholar 

  • Shamel MM, Ramachandran KB, Hasan M, Al-Zuhair S (2007) Hydrolysis of palm and olive oils by immobilized lipase using hollow fibre reactor. Biochem Eng J 34:228–235

    CAS  Google Scholar 

  • Shao P, Meng X, He J, Sun P (2008) Analysis of immobilized Candida rugosa lipase catalyzed preparation of biodiesel from rapeseed soapstock. Food Bioprod Process 86(4):283–289

    Google Scholar 

  • Shaw JF, Wang DL, Wang YJ (1991) Lipase-catalyzed ethanolysis and isopropanolysis of triglycerides with long-chain fatty acids. Enzyme Microb Technol 13:544–546

    CAS  Google Scholar 

  • Shieh C-J, Chang H-M, Liao H-F, Lee C-J (2005) Optimized synthesis of lipase catalyzed biodiesel by Novozyme 435. J Chem Technol Biotechnol 80:307–312

    Google Scholar 

  • Shimada Y, Watanabe Y, Samukawa T, Noda H, Sugihara A, Fukuda H, Tominger Y (1999) Conversion of plant oil to biodiesel using immobilized Candida antarctica lipase. J Am Oil Chem Soc 76:789–793

    CAS  Google Scholar 

  • Shimada Y, Watanabe Y, Sugihara A, Tominaga Y (2002) Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J Mol Catal B: Enzym 17(3–5):133–142

    CAS  Google Scholar 

  • Shu Q, Yang B, Yuan H, Quing S, Zhu G (2007) Synthesis of biodiesel from soybean oil and methanol catalyzed by zeolite beta modified with La3+. Catal Commun 8(12):2159–2165

    CAS  Google Scholar 

  • Sinha S, Avinash KA, Garg S (2008) Biodiesel development from rice bran oil: transesterification process optimization and fuel characterization. Energy Convers Manage 49(5):1248–1257

    CAS  Google Scholar 

  • Soumanou MM, Bornscheuer UT (2003a) Improvement in lipase-catalyzed synthesis of fatty acid methyl esters from sunflower oil. Enzyme Microb Technol 33:97–103

    CAS  Google Scholar 

  • Soumanou MM, Bornscheuer UT (2003b) Lipase-catalyzed alcoholysis of vegetable oils. Eur J Lipid Sci Technol 105(11):656–660

    CAS  Google Scholar 

  • Srivastava A, Prasad R (2000) Triglycerides-based diesel fuels. Ren Sust Energy Rev 4(2):111–133

    CAS  Google Scholar 

  • Tapanes NCO, Aranda DAG, Carneiro JWDM, Antunes OAC (2008) Transesterification of jatropha curcas oil glycerides: theoretical and experimental studies of biodiesel reaction. Fuel 87(10–11):2286–2295

    Google Scholar 

  • Ting W-J, Huang C-M, Giridhar N, Wu W-T (2008) An enzymatic/acid-catalyzed hybrid process for biodiesel production from soybean oil. J Chin Inst of Chem Eng 39(3):203–210

    CAS  Google Scholar 

  • Tiwari AK, Kumar A, Raheman H (2007) Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: an optimized process. Biomass Bioenergy 31(8):569–575

    Google Scholar 

  • Tuter M, Ayse AH, Elif GE, Emel K (2004) Synthesis of fatty acid esters from acid oils using lipase B from Candida antarctica. Eur J Lipid Sci Technol 106(8):513–517

    Google Scholar 

  • Tweddell RJ, Kermasha S, Combes D, Marty A (1998) Esterification, interesterification activities of lipase from Rhizopus niveus and Mucor miehei in three different types of organic media: a comparative study. Enzyme Microbial Technol 22(6):439–445

    CAS  Google Scholar 

  • Uosukainen E, Lamsa M, Linko Y-Y, Linko P, Leisola M (1999) Optimization of enzymatic transesterification of rapeseed oil ester using response and principal component methodology. Enzyme Microb Technol 25(3–5):236–243

    CAS  Google Scholar 

  • Vicente G, Martinez M, Aracil J (2004) Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresour Technol 92(3):297–305

    CAS  Google Scholar 

  • Vicente G, Martinez M, Aracil J (2007a) Optimization of integrated biodiesel production part II: a study of the material balance. Bioresour Technol 98(9):1754–1761

    CAS  Google Scholar 

  • Vicente G, Martinez M, Aracil J (2007b) Optimization of integrated biodiesel production part I: a study of the biodiesel purity. Bioresour Technol 98(9):1724–1733

    CAS  Google Scholar 

  • Wang Y, Wu H, Zong MH (2008) Improvement of biodiesel production by lipozyme TL IM-catalyzed methanolysis using response surface methodology and acyl migration enhancer. Bioresour Technol 99(15):7232–7237

    CAS  Google Scholar 

  • Wantanabe Y, Shimada Y, Sugihara A, Tominaga Y (2002) Conversion of degummed soybean oil to biodiesel fuel with immobilized Candida antarctica lipase. J Mol Catal B: Enzym 17:151–155

    Google Scholar 

  • Watanabe Y, Shimada Y, Sugihara A, Noda H, Fukuda H, Tominaga Y (2000) Continuous production of biodiesel fuel from vegetable oil using immobilized Candida antarctica lipase. J Am Oil Chem Soc 77(4):355–360

    CAS  Google Scholar 

  • Wisdom RA, Dunnill P, Lilly MD (1987) Enzymic interesterification of fats: laboratory and pilot-scale studies with immobilized lipase from Rhizopus arrhizus. Biotechnol Bioeng 29:1081–1085

    CAS  Google Scholar 

  • Xu Y, Du W, Liu D, Zeng J (2003) A novel enzymatic route for biodiesel production from renewable oils in a solvent-free medium. Biotechnol Lett 25:1239–1241

    CAS  Google Scholar 

  • Xu Y, Du W, Liu D (2005) Study on the kinetics of enzymatic interesterification of triglycerides for biodiesel production with methyl acetate as the acyl acceptor. J Mol Catal B: Enzym 32(5–6):241–245

    CAS  Google Scholar 

  • Yadav GD, Lathi PS (2004) Synthesis of citronellol laurate in organic media catalyzed by immobilized lipases: kinetic study. J Mol Catal B: Enzym 27(2–3):113–119

    CAS  Google Scholar 

  • Yokozeki K, Yamanaka S, Takinami K, Hirose Y, Tanaka A, Sonomoto K, Fukui S (1982) Application of immobilized lipase to regio-specific interesterification of triglyceride in organic solvent. Eur J Appl Microbiol Biotechnol 14(1):1–5

    CAS  Google Scholar 

  • Yuan X, Liu J, Zeng G, Shi J, Tong J, Huang G (2008) Optimization of conversion of waste rapeseed oil with high FFA to biodiesel using response surface methodology. Renew Energy 33(7):1678–1684

    CAS  Google Scholar 

  • Yuanzhou X, Davis RJ (2008) Influence of water on the activity and stability of activated Mg–Al hydrotalcites for the transesterification of tributyrin with methanol. J Catal 254:190–197

    Google Scholar 

  • Zhang Y, Dube MA, Mclean DD, Kates M (2003) Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour Technol 90(3):229–240

    CAS  Google Scholar 

  • Zhuan XG, Liang ZB, Sheng-yong L, Jian-zhi Y (2006) Study on immobilized lipase catalyzed transesterification reaction of tung oil. Agri Sci China 5(11):859–864

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Chemical Engineering Department, Annamalai University for providing the facilities to carry out the research work. The financial support from the Tamil Nadu State Council for Science and Technology, Tamil Nadu through Science and Technology scheme for this research work is also acknowledged with thanks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aravindan Rajendran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganesan, D., Rajendran, A. & Thangavelu, V. An overview on the recent advances in the transesterification of vegetable oils for biodiesel production using chemical and biocatalysts. Rev Environ Sci Biotechnol 8, 367–394 (2009). https://doi.org/10.1007/s11157-009-9176-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-009-9176-9

Keywords

Navigation