Skip to main content

Advertisement

Log in

Metabolic syndrome: Role of maternal undernutrition and fetal programming

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Development of metabolic syndrome is attributed to genes, dietary intake, physical activity and environmental factors. Fetal programming due to maternal nutrition is also an important factor especially in developing countries where intrauterine growth retardation followed by excess nutrition postnatally is causing mismatch predisposing individuals to development of metabolic syndrome and its components. Several epidemiological and animal studies have provided evidence for the link between intrauterine growth retardation and adult metabolic diseases. Deficiency of macronutrients, protein and carbohydrates, during pregnancy and gestation results in lower infant birth weight, a surrogate marker of fetal growth and subsequently insulin resistance, glucose intolerance, hypertension and adiposity in adulthood. The role of micronutrients is less extensively studied but however gaining attention with several recent studies focusing on this aspect. Several mechanisms have been proposed to explain the developmental origin of adult diseases important among them being alteration of hypothalamic pituitary axis, epigenetic regulation of gene expression and oxidative stress. All of these mechanisms may be acting at different time during gestation and contributing to development of metabolic syndrome in adulthood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberti KG, Zimmet P, Shaw J. Metabolic syndrome-a new world definition. A consensus statement from International Diabetes Federation. Diabet Med. 2006;23:469–80.

    Article  PubMed  CAS  Google Scholar 

  2. Kelly T, Yang W, Chen CS, Reynolds K, He J. Global burden of obesity in 2005 and projections in 2030. Int J Obes. 2008;32:1431–7.

    Article  CAS  Google Scholar 

  3. Van Dieren S, Beulens JW, van der Schouw YT, Grobbee DE, Neal B. The global burden of diabetes and its complications: an emerging pandemic. Eur J Prev Rehabil. 2010;17:S3–8.

    Article  Google Scholar 

  4. World Health Organization. Obesity and overweight. Fact Sheet N0311. Geneva: World Health Organization; 2006.

    Google Scholar 

  5. Han JC, Lawlor DA, Kimm SY. Childhood obesity. Lancet. 2010;375:1737–48.

    Article  PubMed  Google Scholar 

  6. Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: finding from the Third National Health and Nutrition Examination Survey. JAMA. 2002;287:356–9.

    Article  PubMed  Google Scholar 

  7. Misra A, Misra R, Wijesuriya M, Banerjee D. The metabolic syndrome in South Asians: continuing escalation and possible solutions. Indian J Med Res. 2007;125:345–54.

    PubMed  Google Scholar 

  8. Godfrey KM, Barker DJ. Fetal nutrition and adult disease. Am J Clin Nutr. 2000;71:1344S–52.

    PubMed  CAS  Google Scholar 

  9. Breier BH, Vickers MH, Ikenasio BA, Chan KY, Wong WP. Fetal programming of appetite and obesity. Mol Cell Endocrinol. 2001;185:73–9.

    Article  PubMed  CAS  Google Scholar 

  10. UNICEF and WHO. Low birthweight: country, regional and global estimates. UNICEF; 2004. pgs 27.

  11. Jain V, Singhal A. Catchup growth in low birth weight infants: striking a healthy balance. Rev Endocr Metab Disord. 2012;13:141–7.

    Article  PubMed  Google Scholar 

  12. Gluckman PD, Hanson MA. Developmental origins of diseases paradigm: a mechanistic and evolutionary perspective. Pediatr Res. 2004;56:311–7.

    Article  PubMed  Google Scholar 

  13. Gluckman PD, Hanson MA, Beedle AS, Spencer HG. Predictive adaptive responses in perspective. Trends Endocrinol Metab. 2008;19:109–10.

    Article  PubMed  CAS  Google Scholar 

  14. Barker DJ, Osmond C. Low birth weight and hypertension. Br Med J. 1988;297:134–5.

    Article  CAS  Google Scholar 

  15. Ravelli GP, Stein ZA, Susser MW. Obesity in young men after famine exposure in utero and early infancy. N Engl J Med. 1976;295:349–53.

    Article  PubMed  CAS  Google Scholar 

  16. Ravelli AC, van Der Meulen JH, Osmund C, Barker DJ, Bleker OP. Obesity at the age of 50 in men and women exposed to famine prenatally. Am J Clin Nutr. 1999;70:811–6.

    PubMed  CAS  Google Scholar 

  17. Osmund C, Barker DJ, Winter PD, Fall CH, Simmonds SJ. Early growth and death from cardiovascular disease in women. Br Med J. 1993;307:1519–24.

    Article  Google Scholar 

  18. Edwards LJ, McMillen IC. Impact of maternal undernutrition during periconceptual period, fetal number, and fetal sex on the development of the hypothalamic pituitary axis in sheep during late gestation. Biol Reprod. 2002;66:1562–9.

    Article  PubMed  CAS  Google Scholar 

  19. Brennan KA, Gopalakrishnan GS, Kurlak L, Rhind SM, Kyle CE, Brooks AN, et al. Impact of maternal undernutrition and fetal number on glucocorticoid, growth hormone and insulin like growth factor receptor mRNA abundance in the ovine fetal kidney. Reproduction. 2005;129:151–9.

    Article  PubMed  CAS  Google Scholar 

  20. Bhavdekar A, Yagnik CS, Fall CHD, et al. Insulin resistance syndrome in 8-year old Indian children: small at birth, big at 8 years or both? Diabetes. 1999;48:2422–9.

    Article  Google Scholar 

  21. Lear SA, Kohli A, Bondy GP, Tchernof A, Sniderman AD. Ethnic variation in fat and lean body mass and the association with insulin resistance. J Clin Endocrinol Metab. 2009;94:4696–702.

    Article  PubMed  CAS  Google Scholar 

  22. Patti ME. Intergenerational programming of metabolic diseases: evidence from human populations and experimental animal models. Cell Mol Life Sci. 2013;70:1597–608.

    Article  PubMed  CAS  Google Scholar 

  23. Barker DJP, Hales CN, Fall CHD, Osmond C, Phipps K, Clark PMS. Type 2 diabetes (non insulin dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X) relation to reduced fetal growth. Diabetologia. 1993;36:62–7.

    Article  PubMed  CAS  Google Scholar 

  24. De Rooji SR, Painter RC, Holleman F, Bossuyt PM, Roseboom TJ. The metabolic syndrome in adults prenatally exposed to the Dutch famine. Am J Clin Nutr. 2007;86:1219–24.

    Google Scholar 

  25. Yarbrough DE, Barrett-Connor E, Kritz-Silverstein D, Wingard DL. Birth weight, adult weight, and girth as predictors of metabolic syndrome in postmenopausal women: the Rancho Bernardo study. Diabetes Care. 1998;21:1652–8.

    Article  PubMed  CAS  Google Scholar 

  26. Ramdhani MK, Grobbee DE, Bots ML, Castro CM, Vos LE, et al. Lower birth weight predicts metabolic syndrome in young adults: the atherosclerosis risk in young adults (ARYA)-study. Atheroslerosis. 2006;184:21–7.

    Article  CAS  Google Scholar 

  27. Boney CM, Verma A, Tucker R, Vohr BR. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics. 2005;115:e290–6.

    Article  PubMed  Google Scholar 

  28. Xiao X, Zhang ZX, Li WH, Feng K, Sun Q, Cohen HJ, et al. Low birth weight is associated with components of the metabolic syndrome. Metab Clin Exp. 2010;59:1282–6.

    Article  PubMed  CAS  Google Scholar 

  29. Hult M, Tornhammar P, Ueda P, Chima C, Edstedt Bonamy A-K, et al. Hypertension, diabetes and overweight: looming legacies of the Biafram famine. PLoS One. 2010;5:e13582.

    Article  PubMed  CAS  Google Scholar 

  30. Phillips DJ, Barker DJ, Hales CN, Hirst S, Osmund C. Thinness at birth and insulin resistance in adult life. Diabetologia. 1994;37:150–4.

    Article  PubMed  CAS  Google Scholar 

  31. Jaquet D, Gaboriau A, Czernichow P, Levy-Marchal C. Insulin resistance early in adulthood in subjects born with intrauterine growth retardation. J Clin Endocrinol Metab. 2000;85:1401–6.

    Article  PubMed  CAS  Google Scholar 

  32. Lussana F, Painter RC, Ocke MC, Buller HR, Bossuyt PM, Roseboom TJ. Prenatal exposure to the Dutch famine is associated with a preference for fatty foods and a more atherogenic lipid profile. Am J Clin Nutr. 2008;88:1648–52.

    Article  PubMed  CAS  Google Scholar 

  33. Kajantie E, Barker DJ, Osmund C, Forsen T, Erikkson JG. Growth before 2 years of age and serum lipids 60 years later: the Helsinki Birth Cohort study. Int J Epidemiol. 2008;37:280–9.

    Article  PubMed  Google Scholar 

  34. Lauren L, Jarvelin MR, Elliott P, Sovio U, Spellman A, et al. Relationship between birth weight and blood lipid concentrations in later life: evidence from the existing literature. Int J Epidemiol. 2003;37:280–9.

    Google Scholar 

  35. Kensara OA, Wootton SA, Phillips DI, Patel M, Jackson AA, Elia M. Fetal programming of body composition: relation between birth weight and body composition measured with dual energy X-ray absorptiometry and anthropometric methods in older Englishmen. Am J Clin Nutr. 2005;82:980–7.

    PubMed  CAS  Google Scholar 

  36. Parsons TJ, Power C, Manor O. Fetal and early life growth and body mass index from birth to early adulthood in 1958 British cohort: longitudinal study. Br Med J. 2001;323:1331–5.

    Article  CAS  Google Scholar 

  37. Lawlor DA, Ronalds G, Clark H, Smith GD, Leon DA. Birth weight is inversely associated with incident coronary heart disease and stroke among individuals born in the 1950s: finding from the Aberdeen Children of the 1950s cohort study. Circulation. 2005;112:1414–8.

    Article  PubMed  Google Scholar 

  38. Rich-Edwards JW, Kleinman K, Michels KB, Stamfer MJ, Manson JE, et al. Longitudinal study of birth weight and adult body mass index in predicting risk of coronary heart disease and stroke in women. Br Med J. 2005;330:1115.

    Article  Google Scholar 

  39. Fall CHD, Sachdev HPS, Osmond C, et al. Adult metabolic syndrome and impaired glucose tolerance are associated with different patterns of body mass index gain during infancy; data from the New Delhi birth cohort. Diabetes Care. 2008;31:2349–56.

    Article  PubMed  Google Scholar 

  40. Desai M, Growther NJ, Lucas A, Hales CN. Organ-selective growth in the offspring of protein-restricted mothers. Br J Nutr. 1996;76:591–603.

    Article  PubMed  CAS  Google Scholar 

  41. Fernandez-Twinn DS, Wayman A, Ekizoglou S, Martin MS, Hales CN, Ozanne SE. Maternal protein restriction leads to hyperinsulinemia and reduced insulin-signaling protein expression in 21 days old female offspring. Am J Physiol Regul Integr Comp Physiol. 2005;288:R 368–73.

    CAS  Google Scholar 

  42. Ozanne S, Olsen GS, Hansen LL, Tingey KJ, Nave BT, Wang CL, et al. Early growth restriction leads to down regulation of protein Kinase C zeta and insulin resistance in skeletal muscle. J Endocrinol. 2003;177:235–41.

    Article  PubMed  CAS  Google Scholar 

  43. Maloney CA, Gosby AK, Phuyal JI, Denyer GS, Bryson JM, Caterson ID. Site specific changes in the expression of fat portioning genes in the weanling rats exposed to a low protein diet in utero. Obes Res. 2003;11:461–8.

    Article  PubMed  CAS  Google Scholar 

  44. Berends LM, Fernandez-Twinn DS, Martin-Gronert MS, Cripps RL, Ozanne SE. Catchup growth following intrauterine growth restriction programmes an insulin resistant phenotype in adipose tissue. Int J Obes. 2012. doi:10.1038/ijo.2012.196.

    Google Scholar 

  45. Campbell DM, Hall MH, Barker DJP, Cross J, Sheill AW, Godfrey KM. Diet in pregnancy and the offspring’s blood pressure 40 years later. Br J Obstet Gynaecol. 1996;103:273–80.

    Article  PubMed  CAS  Google Scholar 

  46. Rerkasem K, Wongthanee A, Rerkasem A, Chiowanich P, Sritara P, Pruenlampoo S, et al. Intrauterine nutrition and carotid intimal media thickness in young Thai adults. Asia Pac J Clin Nutr. 2012;21:247–52.

    PubMed  Google Scholar 

  47. Brown LD, Green AS, Limesand SW, Rozance PJ. Maternal amino acid supplementation for intrauterine growth restriction. Front Biosci. 2011;1:428–44.

    Article  Google Scholar 

  48. Wu G, Bazer FW, Satterfield MC, Li X, Wang X, Johnson GA, et al. Impacts of arginine nutrition on embryonic and fetal development in mammals. Amino Acids. 2013;45:241–56.

    Article  PubMed  CAS  Google Scholar 

  49. Fidalgo M, Falcao-Tebas F, Bento-Santos A, de Oliveira E, Nogueira-Neto JF, de Moura EG, et al. Programmed changes in the adult rat offspring caused by maternal protein restriction during gestation and lactation are attenuated by maternal low physical training. Br J Nutr. 2012;1:1–8.

    Google Scholar 

  50. Garofano A, Czernichow P, Bréant B. Beta-cell mass and proliferation following late fetal and early postnatal malnutrition in the rat. Diabetologia. 1998;41:1114–20.

    Article  PubMed  CAS  Google Scholar 

  51. Holemans K, Gerber R, Meurrens K, De Clerck F, Poston I, Van Assche FA. Maternal food restriction in the second hals of pregnancy affects vascular function but not blood pressure of rat female offsprings. Br J Nutr. 1999;81:73–9.

    PubMed  CAS  Google Scholar 

  52. Simmons RA, Templeton LJ, Gertz SI. Intrauterine growth retardation leads to development of type 2 diabetes in rat. Diabetes. 2001;50:2279–86.

    Article  PubMed  CAS  Google Scholar 

  53. Vickers MH, Breier BH, Cutfield WS, Hofman PL, Gluckman PD. Fetal origins of hyperphagia, obesity and hypertension and postnatal amplification by hypercaloric nutrition. Am J Physiol Endocrinol Metab. 2000;279:E83–7.

    PubMed  CAS  Google Scholar 

  54. Krechowec SO, Vickers M, Gertler A, Breier BH. Prenatal influences on leptin sensitivity and susceptibility to diet induced obesity. J Endocrinol. 2006;189:355–63.

    Article  PubMed  CAS  Google Scholar 

  55. Ikenasio-Thorpe BA, Breier BH, Vickers MH, Fraser M. Prenatal influences on susceptibility to diet induced obesity are mediated by altered neuroendocrine gene expression. J Endocrinol. 2007;193:31–7.

    Article  PubMed  CAS  Google Scholar 

  56. Vickers MH, Breier BH, McCarthy D, Gluckman PD. Sedentary behavior during postnatal life is determined by the prenatal environment and exacerbated by postnatal hypercaloric nutrtion. Am J Physiol Regul Integr Comp Physiol. 2003;285:R271–3.

    PubMed  CAS  Google Scholar 

  57. Desai M, Gayle D, Babu J, Rose MG. Programmed obesity in intrauterine growth restricted newborns: modulation by newborn nutrition. Am J Physiol Regul Integr Comp Physiol. 2005;288:R91–6.

    Article  PubMed  CAS  Google Scholar 

  58. Roseboom T, de Rooji S, Painter RC. The Dutch famine and its long consequences for adult health. Early Hum Dev. 2006;82:485–91.

    Article  PubMed  Google Scholar 

  59. De Rooji SR, Wouters H, Yonker JE, Painter RC, Roseboom TJ. Prenatal undernutrition and cognitive function in late adulthood. PNAS USA. 2010;107:16881–6.

    Article  Google Scholar 

  60. Ravelli AC, van der Meulen JH, Michels RP, Osmund C, Barker DJ, et al. Glucose tolerance in adults after prenatal exposure to famine. Lancet. 1998;351:173–7.

    Article  PubMed  CAS  Google Scholar 

  61. Pennigton KA, Harper JL, Sigafoos AN, Beffa LM, Carleton SM, Phillips CL, et al. Effect of food restriction and leptin supplementation on fetal programming in mice. Endocrinology. 2012;153:4556–67.

    Article  CAS  Google Scholar 

  62. Bhargava SK, Sachdev HPS, Fall CHD, Osmund C, Lakshmy R, Barker DJP, et al. Relation of serial changes in childhood body mass index to impaired glucose tolerance in young adulthood. N Engl J Med. 2004;350:865–75.

    Article  PubMed  CAS  Google Scholar 

  63. Sachdev HPS, Fall CHD, Osmond C, Lakshmy R, Dey Biswas SK, Leary SD, et al. Anthropometric indicators of body composition in young adults: relation to size at birth and serial measurements of body mass index in childhood; the New Delhi birth cohort. Am J Clin Nutr. 2005;82:456–66.

    PubMed  CAS  Google Scholar 

  64. Fall CHD, Sachdev HPS, Osmond C, Lakshmy R, Biswas SD, Prabhakaran D, et al. Adult metabolic syndrome and impaired glucose tolerance are associated with different patterns of body mass index gain during infancy; Data from the New Delhi birth cohort. Diabetes Care. 2008;31:2349-56

    Google Scholar 

  65. Sachdev HPS, Osmond C, Fall CHD, Lakshmy R, Ramji S, Dey Biswas SK, et al. Predicting adult metabolic syndrome from childhood body mass index; follow-up of the New Delhi Birth Cohort. Arch Dis Child. 2009;94:768–74.

    Article  PubMed  CAS  Google Scholar 

  66. Huffman MD, Prabhakaran D, Osmond C, Fall CHD, Tandon N, Lakshmy R, et al. Incidence of cardiovascular risk factors in an Indian urban cohort. J Am Coll Cardiol. 2011;57:1766–74.

    Article  Google Scholar 

  67. Yajnik C. Interactions of perturbations in intrauterine growth and growth during childhood on the risk of adult onset disease. Proc Nutr Soc. 2000;59:257–65.

    Article  PubMed  CAS  Google Scholar 

  68. Hartil K, Vuguin PM, Kruse M, Schmuel E, Fiallo A, Vargas C, et al. Maternal substrate utilization programs the development of the metabolic syndrome in male mice exposed to high fat in utero. Pediatr Res. 2009;66:368–73.

    Article  PubMed  CAS  Google Scholar 

  69. Chechi K, Cheema SK. Maternal diet rich in saturated fats has deleterious effects on plasma lipids of mice. Exp Clin Cardiol. 2006;11:129–35.

    PubMed  CAS  Google Scholar 

  70. Samuelsson AM, Matthews PA, Argenton M, Christie MR, McConnell JM, Jansen EH, et al. Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance: a novel murine model of developmental programming. Hypertension. 2008;51:383–92.

    Article  PubMed  CAS  Google Scholar 

  71. Bruce KD, Cagampang FR, Argenton M, Zhang J, Ethirajan PL, Burdge GC, et al. Maternal high-fat feeding primes steatohepatitis in adult mice offspring, involving mitochondrial dysfunction and altered lipogenesis gene expression. Hepatology. 2009;50:1796–808.

    Article  PubMed  CAS  Google Scholar 

  72. Kruse M, Seki Y, Vuguin PM, Du XQ, Fiallo A, Glenn AS, et al. High fat intake during pregnancy and lactation exacerbates high fat diet induced complications in male offspring in mice. Endocrinology. 2013. doi:10.1210/en.2012-1877.

    PubMed  Google Scholar 

  73. Brenseke B, Prater MR, Bahamonde J, Gutierrez C. Current thoughts on maternal nutrition and fetal programming of the metabolic syndrome. J Pregnancy. 2013. doi:10.1155/2013/368461.

    PubMed  Google Scholar 

  74. Burueno AL, Cabrerizo R, Mansilla NG, Sookoian S, Pirola CJ. Maternal high fat intake during pregnancy programs metabolic syndrome related phenotypes through liver mitochondrial DNA copy number and transcriptional activity of liver PPARGC1A. J Nutr Biochem. 2013;24:6–13.

    Article  CAS  Google Scholar 

  75. Rawana S, Clark K, Zhong S, Buison, Chackunkal S, Jen KL. Low dose fructose ingestion during gestation and lactation affects carbohydrate metabolism in rat dams and their offspring. J Nutr. 1993;123:2158–65.

    PubMed  CAS  Google Scholar 

  76. Vickers MH, Clayton ZE, Yap C, Sloboda DM. Maternal fructose intake during pregnancy and lactation alters placental growth and leads to sex-specific changes in fetal and neonatal endocrine function. Endocrinology. 2011;152:1378–87.

    Article  PubMed  CAS  Google Scholar 

  77. Goran MI, Dumke K, Bouret SG, Kayser B, Walker RW, Blumberg B. The obesogenic effect of high fructose exposure during early development. Nat Rev Endocrinol. 2013. doi:10.1038/nrendo.2013.108.

    PubMed  Google Scholar 

  78. Christian P, Stewart CP. Maternal micronutrient deficiency, fetal development and risk of chronic disease. J Nutr. 2010;140:437–45.

    Article  PubMed  CAS  Google Scholar 

  79. Bourque SL, Komolova M, Nakatsu K, Adams MA. Perinatal iron deficiency and blood pressure. Hypertension. 2008;51:154–9.

    Article  PubMed  CAS  Google Scholar 

  80. Lisle SJ, Lewis RM, Petry CJ, Ozanne SE, Hales CN, Forhead AJ. Effect of maternal iron restriction during pregnancy on renal morphology in the adult rat offspring. Br J Nutr. 2003;90:33–9.

    Article  PubMed  CAS  Google Scholar 

  81. Gambling L, Dunford S, Wallace DI, Zuur G, Solanky N, Srai SK, et al. Iron deficiency during pregnancy affects postnatal blood pressure in the rat. J Physiol (Lond). 2003;552:603–10.

    Article  CAS  Google Scholar 

  82. Lewis RM, Petry CJ, Ozanne SE, Hales CN. Effects of maternal iron restriction in the rat on blood pressure, glucose tolerance, and serum lipids in the 3-month-old offspring. Metabolism. 2001;50:562–7.

    Article  PubMed  CAS  Google Scholar 

  83. Bourque SL, Komolova M, McCabe K, Adams MA, Nakatsu K. Perinatal iron deficiency combined with a high-fat diet causes obesity and cardiovascular dysregulation. Endocrinology. 2012;153:1174–82.

    Article  PubMed  CAS  Google Scholar 

  84. Cefalu WT, Hu FB. Role of chromium in human health and in diabetes. Diabetes Care. 2004;27:2741–51.

    Article  PubMed  CAS  Google Scholar 

  85. Padmavathi IJN, Rao KR, Venu L, Ganeshan M, Kumar AK, Rao CN, et al. Chronic maternal dietary chromium restriction modulates visceral adiposity: probable underlying mechanisms. Diabetes. 2010;59:98–104.

    Article  PubMed  CAS  Google Scholar 

  86. Venu L, Harishankar N, Krishna TP, Raghunath M. Maternal dietary vitamin restriction increases body fat content but not insulin resistance in WNIN rat offspring up to 6 months of age. Diabetologia. 2004;47:1493–501.

    Article  PubMed  CAS  Google Scholar 

  87. Kumar KA, Lalitha A, Pavithra D, Padmavathi IJN, Ganeshan M, Rao KR, et al. Maternal dietary folate and/or vitamin B12 restrctions alter body composition (adiposity) and lipid metabolism in Wistar rat offspring. J Nutr Biochem. 2013;24:25–31.

    Article  PubMed  CAS  Google Scholar 

  88. Lewis SJ, Leary S, Davey Smith G, Ness A. Body composition at age 9 years, maternal folate intake during pregnancy and methyltetrahydrofolate reductase (MTHFR) C677T genotype. Br J Nutr. 2009;102:493–6.

    Article  PubMed  CAS  Google Scholar 

  89. Yajnik CS, Deshpande SS, Jackson AA, Refsum H, Rao S, Fisher DJ, et al. Vitamin B(12) and folate concentrations during pregnancy and insulin resistance in the off- spring: the Pune Maternal Nutrition Study. Diabetologia. 2008;51:29–38.

    Article  PubMed  CAS  Google Scholar 

  90. Morris GE, Zhou Q, Hegsted M, Keenan MJ. Maternal consumption of low vitamin D diet retards metabolic and contractile development in neonatal rat heart. J Mol Cell Cardiol. 1995;27:1245–50.

    Article  PubMed  CAS  Google Scholar 

  91. Gale CR, Robinson SM, Harvey NC, Javaid MK, Jiang B, Martyn CN, et al. Maternal vitamin D status during pregnancy and child outcomes. Eur J Clin Nutr. 2008;62:68–77.

    Article  PubMed  CAS  Google Scholar 

  92. Lapillonne A. Vitamin D deficiency during pregnancy may impair maternal and fetal outcomes. Med Hypotheses. 2010;74:71–5.

    Article  PubMed  CAS  Google Scholar 

  93. Merlet-Benichou C. Influence of fetal environment on kidney development. Int J Dev Biol. 1999;43:453–6.

    PubMed  CAS  Google Scholar 

  94. Lelievre-Pegorier M, Vilar J, Ferrier ML, Moreau E, Freund N, Gilbert T, et al. Mild vitamin A deficiency leads to inborn nephron deficit in the rat. Kidney Int. 1998;54:1455–62.

    Article  PubMed  CAS  Google Scholar 

  95. Matthews KA, Rhoten WB, Driscoll HK, Chertow BS. Vitamin A deficiency impairs fetal islet development and causes subsequent glucose intolerance in adult rats. J Nutr. 2004;134:1958–63.

    PubMed  CAS  Google Scholar 

  96. Khatry SK, West KP, Stewart CP, Katz J, LeClerq SC, Schulze KJ, et al. Maternal vitamin A supplementation during pregnancy has no impact on blood pressure in pre-adolescent children in rural Nepal. The 2nd international meeting of the Micronutrient Forum, May 12–15, Beijing, China, Abst No. W56; 2009

  97. Venu L, Kishore YD, Raghunath M. Maternal and perinatal magnesium restriction predisposes rat pups to insulin resistance and glucose intolerance. J Nutr. 2005;135:1353–8.

    PubMed  CAS  Google Scholar 

  98. Venu L, Harishankar N, Krishna TP, Raghunath M. Does maternal dietary mineral restriction per se predispose the offspring to insulin resistance? Eur J Endocrinol. 2004;151:287–94.

    Article  PubMed  CAS  Google Scholar 

  99. Jou MY, Phillips AF, Lonnerdal B. Maternal zinc deficiency in rats affects growth and glucose metabolism in the offspring by inducing insulin resistance postnatally. J Nutr. 2010;140:1621–7.

    Article  PubMed  CAS  Google Scholar 

  100. Jou MY, Lonnerdal B, Phillips AF. Maternal Zinc restriction affects postnatal growth and glucose homeostasis in rat offspring diffenetly depending upo adequancy of their nutirents. Pediatr Res. 2012;71:228–34.

    Article  PubMed  CAS  Google Scholar 

  101. Bergel E, Belizan JM. A deficient maternal calcium intake during pregnancy increases blood pressure of the offspring in adult rats. BJOG. 2002;109:540–5.

    Google Scholar 

  102. Bakker R, Rifas-Shiman SL, Kleinman KP, Lipshultz SE, Gillman MW. Maternal calcium intake during pregnancy and blood pressure in the offspring at age 3 years: a follow-up analysis of the Project Viva cohort. Am J Epidemiol. 2008;168:1374–80.

    Article  PubMed  Google Scholar 

  103. Hiller JE, Crowther CA, Moore VA, Willson K, Robinson JS. Calcium supplementation in pregnancy and its impact on blood pressure in children and women: follow up of a randomised controlled trial. Aust N Z J Obstet Gynaecol. 2007;47:115–21.

    Article  PubMed  Google Scholar 

  104. Hawkesworth S. Conference on “Multidisciplinary Approaches to Nutritional Problems”. Postgraduate Symposium. Exploiting dietary supplementation trials to assess the impact of the prenatal environment on CVD risk. Proc Nutr Soc. 2009;68:78–88.

    Article  PubMed  Google Scholar 

  105. Hales CN, Barker DJP. Type 2 diabetes: the thrifty phenotype hypothesis. Diabetologia. 1992;35:595–601.

    Article  PubMed  CAS  Google Scholar 

  106. Simmons RA, Gounis AS, Bangalore SA, Ogata ES. Intrauterine growth retardation: fetal glucose transport is diminished to lungs but spared in brain. Pediatr Res. 1992;31:59–63.

    Article  PubMed  CAS  Google Scholar 

  107. Simmons RA, Flozak AS, Ogata ES. The effect of insulin and insulin like growth factor-I on glucose transport in normal and small for gestational age fetal rats. Endocrinology. 1993;133:1361–8.

    Article  PubMed  CAS  Google Scholar 

  108. Giabfarani S, Germani D, Branca F. Low birthweight and adult insulin resistance: the catchup growth hypothesis. Arch Dis Childhood. 1999;81:171–3.

    Google Scholar 

  109. Luo ZC, Fraser WD, Julien P, Deal AC, Audibert F, Smith GN, et al. Tracing the origins of fetal origins of adult diseases: programming by oxidative stress. Med Hypotheses. 2006;66:18–44.

    Article  CAS  Google Scholar 

  110. Willcox JK, Ash SL, Gatignani L. Antioxidants and prevention of chronic diseases. Crit Rev Food Sci Nutr. 2004;44:275–95.

    Article  PubMed  CAS  Google Scholar 

  111. Gupta P, Narang M, Banerjee BD, Basu S. Oxidative stress in term small for gestational age neonates born to undernourished mothers: a case control study. BMC Pediatr. 2004;4:14.

    Article  PubMed  Google Scholar 

  112. Baydas G, Karatas E, Gursu MF, Bozkurt HA, Ilhan N, Yassar A, et al. Antioxidant vitamin levels in term and preterm infants and their relation to maternal vitamin status. Arch Med Res. 2002;33:276–80.

    Article  PubMed  CAS  Google Scholar 

  113. Datta S, Patterson EH, Vincitore M, Tonkiss J, Morgane PJ, Galler JR. Prenatal protein malnourished rats show changes in sleep/wake behavior as adults. J Sleep Res. 2000;9:71–9.

    Article  PubMed  CAS  Google Scholar 

  114. Breton C, Lukaszewski MA, Risold PY, Enache M, Guillemot J, Delahaye F, et al. Maternal prenatal undernutrition alters the response of POMC neurons to energy status variation in adult male rat offspring. Am J Physiol Endocrinol Metab. 2009;296:E462–72.

    Article  PubMed  CAS  Google Scholar 

  115. Edwards GR, Benediktsson R, Lindsay RS, Secki JR. Dysfunctions of placental glucocorticoid barrier: link between fetal environment and adult hypertension? Lancet. 1993;341:355–7.

    Article  PubMed  CAS  Google Scholar 

  116. Phillips DIW, Walker BR, Reynolds RM, Flanagan DEH, Wood PJ, Osmond C, et al. Low birth weight predicts elevated plasma cortisol concentrations in adults from 3 populations. Hypertension. 2000;35:1301–6.

    Article  PubMed  CAS  Google Scholar 

  117. Phillips DIW, Barker DJP, Fall CHD, Secki JR, Whorwood CB, Wood PJ, et al. Elevated plasma cortisol concentrations: a link between low birth weight and the insulin resistance syndrome? J Clin Endocrinol Metab. 1998;83:757–60.

    Article  PubMed  CAS  Google Scholar 

  118. Reynolds RM. Glucocorticoid excess and the developmental origins of disease: two decades of testing hypothesis-2012 Curt Richter Award Winner. Psychoneuroendocrinology. 2013;38:1–11.

    Article  PubMed  CAS  Google Scholar 

  119. Ahima RS, Prabakaran D, Flier JS. Postnatal leptin surge and regulation of circadian rhythm of leptin by feeding. Implications for energy homeostasis and neuroendocrine function. J Clin Invest. 1998;101:1020–7.

    Article  PubMed  CAS  Google Scholar 

  120. Vickers MH, Gluckman PD, Coveny AH, Hofman PL, Cutfield WS, et al. Neonatal leptin treatment reverses developmental programming. Endocrinology. 2005;146:4211–6.

    Article  PubMed  CAS  Google Scholar 

  121. Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A. 2008;105:17046–9.

    Article  PubMed  CAS  Google Scholar 

  122. Godfrey KM, Sheppard A, Gluckman PD, Lillycrop KA, Burdge GC, McLean C, et al. Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. Diabetes. 2011;60:1528–34.

    Article  PubMed  CAS  Google Scholar 

  123. Park JH, Stoffers DA, Nicholls RD, Simmons RA. Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1. J Clin Investig. 2008;118:2316–24.

    Article  PubMed  CAS  Google Scholar 

  124. Jennings BJ, Ozanne SE, Dorling MW, Hales CN. Early growth determines longevity in male rats and may be related to telomere shortening in the kidneys. FEBS Lett. 1999;448:4–8.

    Article  PubMed  CAS  Google Scholar 

  125. Tarry Adkins JL, Martin-Gronert MS, Cehn JH, Cripps RL, Ozanne SE. Maternal diet influences DNA damage, aortic telomere length, oxidative stress, and antioxidant defense capacity in rats. FASEB J. 2008;22:2037–44.

    Article  PubMed  CAS  Google Scholar 

  126. Tarry-Adkins JL, Chen JH, Smith NS, Jones RH, Cherif H, Ozanne SE. Poor maternal nutrition followed by accelerated postnatal growth leads to telomere shortening and increased markers of cell senescence in rat islets. FASEB J. 2009;23:1521–8.

    Article  PubMed  CAS  Google Scholar 

  127. Raqib R, Alam DS, Sarker P, Ahmad SM, Ara G, Yunus M, et al. Low birth weight is associated with altered immune function in rural Bangladesh children: a birth cohort study. Am J Clin Nutr. 2007;85:845–52.

    PubMed  CAS  Google Scholar 

  128. Kajantie E, Pietillainen KH, Wehkalampi K, Kananen L, Raikkonen K, Rissanen A, et al. No association between body size at birth and leucocyte telomere length in adult life-evidence from three cohort studies. Int J Epidemiol. 2012;41:1400–8.

    Article  PubMed  Google Scholar 

  129. Hallows SE, Regnault TRH, Betts DH. The long and short of it: the role of telomeres in fetal origins of adult disease. J Pregnancy. 2012. doi:10.1155/2012/638476.

    PubMed  Google Scholar 

  130. Chang E, Harley CB. Telomere length and replicative aging in human vascular tissues. Proc Natl Acad Med Sci U S A. 1995;92:11190–4.

    Article  CAS  Google Scholar 

  131. Sattar N, McConnachie A, O’Reilly D, Upton MN, Greer IA, Davey SG, et al. Inverse association between birth weight and C-reactive protein concentrations in MIDSPAN family study. Arterioscler Thromb Vasc Biol. 2004;24:583–7.

    Article  PubMed  CAS  Google Scholar 

  132. Tzoulaki I, Jarvelin MR, Hartikainen AL, Leinonen M, Pouta A, Paldanius M, et al. Size at birth, weight gain over the life course, and low grade inflammation in young adulthood: northern Finland 1966 birth cohort study. Eur Heart J. 2008;29:1049–56.

    Article  PubMed  Google Scholar 

  133. Gillum RF. Association of serum C-reactive protein and indices of bodyfat distribution and overweight in Mexican American children. J Natl Med Assoc. 2003;95:545–52.

    PubMed  CAS  Google Scholar 

  134. Lakshmy R, Fall CHD, Sachdev HPS, Osmund C, Prabhakaran D, Biswas SD, et al. Childhood body mass index and adult proinfammatory and prothrombotic risk factors: data from New Delhi Birth cohort. Int J Epidemiol. 2011;40:102–11.

    Article  PubMed  Google Scholar 

  135. Park KS, Kim SK, Kim MS, Cho EY, Lee JH, Lee KU, et al. Fetal and early postnatal protein malnutrition cause long-term changes in rat liver and muscle mitochondria. J Nutr. 2003;133:3085–90.

    PubMed  CAS  Google Scholar 

  136. Mortensen OH, Olsen HL, Frandsen L, Nielsen PE, Nielsen FC, Grunnet N, et al. Gestational protein restriction in mice has pronounced effects on gene expression in newborn offspring’s liver and skeletal muscle; protective effect of taurine. Pediatr Res. 2010;67:47–53.

    Article  PubMed  CAS  Google Scholar 

  137. Mortensen OH, Olsen HL, Frandsen L, Nielsen PE, Nielsen FC, Grunnet N, et al. A maternal low protein diet has pronounced effects on mitochondrial gene expression in offspring liver and skeletal muscle; protective effect of taurine. J Biomed Sci. 2010;17:S38.

    Article  PubMed  CAS  Google Scholar 

  138. Lee YY, Park KS, Pak YK, Lee HK. The role of mitochondrial DNA in the development of type 2 diabetes caused by fetal malnutrition. J Nutr Biochem. 2005;16:195–204.

    Article  PubMed  CAS  Google Scholar 

  139. Simmons RA, Suponitsky-Kroyter I, Selak MA. Progressive accumulation of mitochondrial DNA mutations and decline in mitochondrial function lead to beta-cell failure. J Biol Chem. 2005;280:28785–91.

    Article  PubMed  CAS  Google Scholar 

  140. Lee HK, Cho YM, Kwak SH, Lim S, Park KS, Shim EB. Mitochondrial dysfunction and metabolic syndrome- looking for environmental factors. Biochim Biophys Acta. 2010;1800:282–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The author declares no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramakrishnan Lakshmy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakshmy, R. Metabolic syndrome: Role of maternal undernutrition and fetal programming. Rev Endocr Metab Disord 14, 229–240 (2013). https://doi.org/10.1007/s11154-013-9266-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-013-9266-4

Keywords

Navigation