Skip to main content

Leucine and Fetal Growth

  • Chapter
  • First Online:
Branched Chain Amino Acids in Clinical Nutrition

Abstract

Maternal nutrition is directly related to the growth and development of the fetus. However, epidemiological studies have demonstrated the consequences of poor maternal nutrition on the development of diseases in later life, such as obesity, cardiovascular diseases associated with a high incidence of myocardial infarction, insulin resistance, diabetes, hypertension, and dyslipidemias. On the basis of these observations, Barker formulated the hypothesis of the fetal origin of diseases, which proposes that fetuses exposed to a limited supply of nutrients adapt to this situation by altering their metabolic processes. Fetal programming can therefore be defined as an adaptive process to an adverse intrauterine environment which redefines developmental processes, guaranteeing fetal survival.

In this respect, it has been observed that dietary modifications during pregnancy, such as protein restriction, promote specific changes in the functional activity and expression of placental transporters, particularly amino acid transporters, which are directly related to the regulation of fetal growth in response to the altered supply of nutrients by the placenta. It is a known fact that embryonic cells respond directly to amino acid deficiency by altering the expression of a variety of genes that regulate growth, differentiation, and apoptosis. In addition to maternal nutrition, there are other factors associated with fetal growth, including genetic factors and the production of hormones such as insulin, insulin-like growth factors (IGFs), ghrelin, and leptin.

In the following chapter, we discuss aspects of the amino acid leucine and fetal growth and report the data of experimental studies. In addition, we highlight the molecular mechanisms underlying the leucine. We would like to draw the attention of the reader to the fact that this study seems to be a promising research field in nutrition and health, which is crucial for the development of public health strategies and programs designed to prevent chronic non-communicable diseases in adult life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barker DJP, Hales CN, Fall CHD, Osmond C, Phipps K, Clark PMS. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia. 1993;36:62–7.

    Article  CAS  PubMed  Google Scholar 

  2. Desai M, Gayle D, Babu J, Ross MG. Permanent reduction in heart and kidney organ growth in offspring of undernourished rat dams. Am J Obstet Gynecol. 2005;193:1224–32.

    Article  PubMed  Google Scholar 

  3. Barker DJ. Fetal nutrition and cardiovascular disease in later life. Br Med Bull. 1997;53:96–108.

    Article  CAS  PubMed  Google Scholar 

  4. Jansson T, Scholtbach V, Powell TL. Placental transport of leucine and lysine is reduced in intrauterine growth restriction. Pediatr Res. 1998;44:532–7.

    Article  CAS  PubMed  Google Scholar 

  5. Malandro MS, Beveridge MJ, Kilberg MS, Novak DA. Effect of low protein diet-induced intrauterine growth retardation on rat placental amino acid transport. Am J Physiol. 1996;271:C295–303.

    CAS  PubMed  Google Scholar 

  6. Lesage J, Hahn D, Léonhardt M, Blondeau B, Bréant B, Dupouy JP. Maternal undernutrition during late gestation-induced intrauterine restriction in the rat is associated with impaired placental GLUT3 expression, but does not correlate with endogenous corticosterone levels. J Endocrinol. 2002;174:37–43.

    Article  CAS  PubMed  Google Scholar 

  7. Roos S, Powell TL, Jansson T. Placental mTOR links maternal nutrient availability to fetal growth. Biochem Soc Trans. 2009;37:295–8.

    Article  CAS  PubMed  Google Scholar 

  8. Chiesa C, Osborn JF, Haass C, Natale F, Spinelli M, Scapillati E, Spinelli A, Pacifico L. Ghrelin, leptin, IGF-1, IGFBP-3, and Insulin concentrations at birth: is there a relationship with fetal growth and neonatal anthropometry? Clin Chem. 2008;54:550–8.

    Article  CAS  PubMed  Google Scholar 

  9. Brown LD, Green AS, Limesand SW, Rozance PJ. Maternal amino acid supplementation for intrauterine growth restriction. Front Biosci (Schol Ed). 2011;3:428–44.

    Article  Google Scholar 

  10. Figueras F, Gardosi J. Intrauterine growth restriction: new concepts in antenatal surveillance, diagnosis, and management. Am J Obstet Gynecol. 2011;204:288–300.

    Article  PubMed  Google Scholar 

  11. Villar J, Carroli G, Wojdyla D, et al. Preeclampsia, gestational hypertension and intrauterine growth restriction, related or independent conditions? Am J Obstet Gynecol. 2006;194:921–31.

    Article  PubMed  Google Scholar 

  12. Alexandre-Gouabau MC, Courant F, Le Gall G, Moyon T, Darmaun D, Parnet P, Coupé B, Antignac JP. Offspring metabolomic response to maternal protein restriction in a rat model of intrauterine growth restriction (IUGR). J Proteome Res. 2011;10:292–302.

    Article  Google Scholar 

  13. Clausson B, Gardosi J, Francis A, Cnattingius S. Perinatal outcome in SGA births defined by customised versus population-based birthweight standards. BJOG. 2001;108:830–4.

    CAS  PubMed  Google Scholar 

  14. Metcoff J, Cole TJ, Luff R. Fetal growth retardation induced by dietary imbalance of threonine and dispensable amino acids, with adequate energy and protein-equivalent intakes, in pregnant rats. J Nutr. 1981;111:1411–24.

    CAS  PubMed  Google Scholar 

  15. Wu G, Pond WG, Ott T, Bazer FW. Maternal dietary protein deficiency decreases amino acid concentrations in fetal plasma and allantoic fluid of pigs. J Nutr. 1998;128:894–902.

    CAS  PubMed  Google Scholar 

  16. Greenwood PL, Bell AW. Consequences of intra-uterine growth retardation for postnatal growth, metabolism and pathophysiology. Reprod Suppl. 2003;61:195–206.

    CAS  PubMed  Google Scholar 

  17. Kimble RB, Matayoshi AB, Vannice JL, Kung VT, Williams C, Pacifici R. Simultaneous block of interleukin-1 and tumor necrosis factor is required to completely prevent bone loss in the early postovariectomy period. Endocrinology. 1995;136:3054–61.

    CAS  PubMed  Google Scholar 

  18. Symonds ME, Pearce S, Bispham J, Gardner DS, Stephenson T. Timing of nutrient restriction and programming of fetal adipose tissue development. Proc Nutr Soc. 2004;63:397–403.

    Article  PubMed  Google Scholar 

  19. Bispham J, Clarke L, Symonds ME, Stephenson T. Postnatal ontogeny of insulin-like growth factor (IGF) and prolactin receptor (PRL-R) in ovine perirenal adipose tissue. J Physiol. 2003;65:547–65.

    Google Scholar 

  20. Bayol SA, Simbi BH, Stickland NC. A maternal cafeteria diet during gestation and lactation promotes adiposity and impairs skeletal muscle development and metabolism in rat offspring at weaning. J Physiol. 2005;567:951–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Pantaleão LC, Teodoro GF, Torres-Leal FL, et al. Maternal postnatal high-fat diet, rather than gestational diet, affects morphology and mTOR pathway in skeletal muscle of weaning rats. J Nutr Biochem. 2013. doi:10.1016/j.jnutbio.2012.10.009.

    Google Scholar 

  22. Du M, Yan X, Tong JF, Zhao J, Zhu MJ. Maternal obesity, inflammation, and fetal skeletal muscle development. Biol Reprod. 2010;82:4–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Lawrence T, Fowler V. Growth of farm animals. 2nd ed. CAB International: Wallingford; 2002.

    Book  Google Scholar 

  24. Zhu MJ, Ford SP, Nathanielsz PW, Du M. Effect of maternal nutrient restriction in sheep on the development of fetal skeletal muscle. Biol Reprod. 2004;71:1968–73.

    Article  CAS  PubMed  Google Scholar 

  25. Eriksson JG, Forsen T, Jaddoe VWV, Osmond C, Barker DJP. Effects of size at birth and childhood growth on the insulin resistance syndrome in elderly individuals. Diabetologia. 2002;45:342–8.

    Article  CAS  PubMed  Google Scholar 

  26. Brown LD, Rozance PJ, Thorn SR, Friedman JE, Hay Jr WW. Acute supplementation of amino acids increases net protein accretion in IUGR fetal sheep. Am J Physiol Endocrinol Metab. 2012;303:352–64.

    Article  Google Scholar 

  27. Shibata E, Hubel CA, Powers RW, et al. Placental system A amino acid transport is reduced in pregnancies with small for gestational age (SGA) infants but not in preeclampsia with SGA infants. Placenta. 2008;29:879–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Lager S, Powell TL. Regulation of nutrient transport across the placenta. J Pregnancy. 2012;2012:179827.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Glazier JD, Cetin I, Perugino G, Ronzoni S, Grey AM, Mahendran D, Marconi AM, Pardi G, Sibley CP. Association between the activity of the system A amino acid transporter in the microvillous plasma membrane of the human placenta and severity of fetal com-promise in intrauterine growth restriction. Pediatr Res. 1997;42:514–9.

    Article  CAS  PubMed  Google Scholar 

  30. Rosario FJ, Jansson N, Kanai Y, Parsad PD, Powell TL, Jansson T. Maternal protein restriction in the rat inhibits placental insulin, mTOR, and STAT3 signaling and down-regulates placental amino acid transporters. Endocrinology. 2011;152:1119–29.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Roos S, Jansson N, Palmberg I, Saljo K, Powell TL, Jansson T. Mammalian target of rapamycin in the human placenta regulates leucine transport and is down-regulated in restricted fetal growth. J Physiol. 2007;582:449–59.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Nicastro H, Da Luz CR, Chaves DF, Bechara LR, Voltarelli VA, Rogero MM, Lancha Jr AH. Does branched-chain amino acids supplementation modulate skeletal muscle remodeling through inflammation modulation? Possible mechanisms of action. J Nutr Metab. 2012;2012:136937.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Dodd KM, Tee AR. Leucine and mTORC1: a complex relationship. Am J Physiol Endocrinol Metab. 2012;302:1329–42.

    Article  Google Scholar 

  34. Kimball SR, Jefferson LS. Signaling pathways and molecular mechanisms through which branched-chain amino acids mediate translational control of protein synthesis. J Nutr. 2006;136:227–31.

    Google Scholar 

  35. Stipanuk MH. Leucine and protein synthesis: mTOR and beyond. Nutr Rev. 2007;65:122–9.

    Article  PubMed  Google Scholar 

  36. Lynch CJ, Fox HL, Vary TC, Jefferson LS, Kimball SR. Regulation of amino acid-sensitive TOR signaling by leucine analogues in adipocytes. J Cell Biochem. 2000;77:234–51.

    Article  CAS  PubMed  Google Scholar 

  37. Donato Jr J, Pedrosa RG, Cruzat VF, Pires ISO, Tirapegui J. Effects of leucine supplementation on the body composition and protein status of rats submitted to food restriction. Nutrition. 2006;22:520–7.

    Article  CAS  PubMed  Google Scholar 

  38. Vianna D, Teodoro GFR, Torres-Leal FL, Pantaleão LC, Donato Jr J, Tirapegui J. Long-term leucine supplementation reduces fat mass gain without changing body protein status of aging rats. Nutrition. 2012;28:182–9.

    Article  CAS  PubMed  Google Scholar 

  39. Lynch CJ, Gern B, Lioyd SM, Eicher R, Vary TC. Leucine in food mediates of the postprandial rise in plasma leptin concentrations. Am J Physiol Endocrinol Metab. 2006;291:621–30.

    Article  Google Scholar 

  40. Torres-Leal FL, Fonseca-Alaniz MH, Teodoro GF, et al. Leucine supplementation improves adiponectin and total cholesterol concentrations despite the lack of changes in adiposity or glucose homeostasis in rats previously exposed to a high-fat diet. Nutr Metab. 2011;8:62.

    Article  CAS  Google Scholar 

  41. Torres-Leal FL, Fonseca-Alaniz MH, Rogero MM, Tirapegui J. The role of inflamed adipose tissue in the insulin resistance. Cell Biochem Funct. 2010;28:623–31.

    Article  CAS  PubMed  Google Scholar 

  42. Mogami H, Yura S, Itoh H, et al. Isocaloric high-protein diet as well as branched-chain amino acids supplemented diet partially alleviates adverse consequences of maternal undernutrition on fetal growth. Growth Horm IGF Res. 2009;19:478–85.

    Article  CAS  PubMed  Google Scholar 

  43. Teodoro GF, Vianna D, Torres-Leal FL, et al. Leucine is essential for attenuating fetal growth restriction caused by a protein-restricted diet in rats. J Nutr. 2012;142:924–30.

    Article  CAS  PubMed  Google Scholar 

  44. Parimi PS, Cripe-Mamie C, Kalhan SC. Metabolic responses to protein restriction during pregnancy in rat and translation initiation factors in the mother and fetus. Pediatr Res. 2004;56:423–31.

    Article  CAS  PubMed  Google Scholar 

  45. Maliszewski AM, Gadhia MM, O’Meara MC, Thorn SR, Rozance PJ, Brown LD. Prolonged infusion of amino acids increases leucine oxidation in fetal sheep. Am J Physiol Endocrinol Metab. 2012;302:1483–92.

    Article  Google Scholar 

  46. Rozance PJ, Crispo MM, Barry JS, O’Meara MC, Frost MS, Hansen KC, Hay Jr WW, Brown LD. Prolonged maternal amino acid infusion in late-gestation pregnant sheep increases fetal amino acid oxidation. Am J Physiol Endocrinol Metab. 2009;297:638–46.

    Article  Google Scholar 

  47. Paolini CL, Marconi AM, Ronzoni S, et al. Placental transport of leucine, phenylalanine, glycine, and proline in intrauterine growth-restricted pregnancies. J Clin Endocrinol Metab. 2001;86:5427–32.

    Article  CAS  PubMed  Google Scholar 

  48. Murgas Torrazza R, Suryawan A, Gazzaneo MC, et al. Leucine supplementation of a low-protein meal increases skeletal muscle and visceral tissue protein synthesis in neonatal pigs by stimulating mTOR-dependent translation initiation. J Nutr. 2010;140:2145–52.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Ventrucci G, Mello MAR, Gomes Marcondes MCC. Effects of leucine supplemented diet on intestinal absorption in tumor bearing pregnant rats. BMC Cancer. 2002;2:7.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Ventrucci G, Mello MAR, Gomes Marcondes MCC. Leucine-rich diet alters the eukaryotic translation initiation factors expression in skeletal muscle of tumour-bearing rats. BMC Cancer. 2007;7:1–11.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Tirapegui Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tirapegui, J., Vianna, D., Teodoro, G.F.R., Pantaleão, L.C. (2015). Leucine and Fetal Growth. In: Rajendram, R., Preedy, V., Patel, V. (eds) Branched Chain Amino Acids in Clinical Nutrition. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1923-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1923-9_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1922-2

  • Online ISBN: 978-1-4939-1923-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics