Skip to main content
Log in

Stability issues of CO tolerant Pt-based electrocatalysts for polymer electrolyte membrane fuel cells: comparison of Pt/Ti0.8Mo0.2O2–C with PtRu/C

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The stability and CO tolerance of a self-made 20 wt% Pt/Ti0.8Mo0.2O2–C mixed oxide–carbon composite supported electrocatalyst was compared to those of a commercial state-of-the-art PtRu/C electrocatalyst by means of cyclic voltammetry and COads stripping voltammetry measurements. On the Pt/Ti0.8Mo0.2O2–C catalyst the oxidation of CO takes place at exceptionally low potential values (ECO,onset = 50 mV); the onset potential is shifted to less positive potentials by 150 mV compared to the PtRu/C catalyst. A stability test involving 500 polarization cycles revealed that the PtRu/C catalyst suffered more significant degradation than the composite supported Pt catalyst. XPS measurements indicated that the degradation is connected to ruthenium dissolution. At the same time, better electrocatalytic stability and increased CO tolerance of the Pt/Ti0.8Mo0.2O2–C electrocatalyst compared to the PtRu/C catalyst was evidenced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mathias MF, Makharia R, Gasteiger HA, Conley JJ, Fuller TJ, Gittleman CI, Kocha SS, Miller DP, Mittelsteadt CK, Xie T, Yan SG, Yu PT (2005) Two Fuel Cell cars in every garage? Electrochem Soc Interface 14:24–35

    CAS  Google Scholar 

  2. Elezović NR, Gajić-Krstajić LJM, Vračar LJM, Krstajić NV (2010) Effect of chemisorbed CO on MoOx-Pt/C electrode on the kinetics of hydrogen oxidation reaction. Int J Hydrogen Energy 35:12878–12887

    Article  CAS  Google Scholar 

  3. Santiago EI, Batista MS, Assaf EM, Ticianelli EA (2004) Mechanism of CO tolerance on molybdenum-based electrocatalysts for PEMFC. J Electrochem Soc 151(7):A944–A949

    Article  CAS  Google Scholar 

  4. Yan Z, Xie J, Jing J, Zhang M, Wei W, Yin S (2012) MoO2 nanocrystals down to 5 nm as Pt electrocatalyst promoter for stable oxygen reduction reaction. Int J Hydrogen Energy 37:15948–15955

    Article  CAS  Google Scholar 

  5. Martins PFBD, Ticianelli EA (2015) Electrocatalytic activity and stability of platinum nanoparticles supported on carbon-molybdenum oxides for the oxygen reduction reaction. Chemelectrochem 2(9):1298–1306

    Article  CAS  Google Scholar 

  6. Antolini E (2007) Catalysts for direct ethanol fuel cells. J Power Sources 170:1–12

    Article  CAS  Google Scholar 

  7. Pereira LGS, Paganin VA, Ticianelli EA (2009) Investigation of the CO tolerance mechanism at several Pt-based bimetallic anode electrocatalysts in a PEM fuel cell. Electrochim Acta 54:1992–1998

    Article  CAS  Google Scholar 

  8. Huang SY, Chang CM, Wang KW, Yeh CT (2007) Promotion of platinum-ruthenium catalyst for electrooxidation of methanol by crystalline ruthenium dioxide. ChemPhysChem 8:1774–1777

    Article  CAS  PubMed  Google Scholar 

  9. Gasteiger HA, Markovic NM, Ross PN Jr (1995) H2 and CO electrooxidation on well-characterized Pt, Ru, and Pt-Ru. 1. Rotating disk electrode studies of the pure gases including temperature effects. J Phys Chem 99:8290–8301

    Article  CAS  Google Scholar 

  10. Ross PN Jr, Kinoshita K, Scarpellino AJ, Stonehart P (1975) Electrocatalysis on binary alloys. II. Oxidation of molecular hydrogen on supported Pt + Ru alloys. J Electroanal Chem 63:97–110

    Article  CAS  Google Scholar 

  11. Jones S, Trdsree K, Sawangphruk M, Foord JS, Thompsett D, Tsang SCE (2010) Promotion of direct methanol electro-oxidation by Ru terraces on Pt by using a reversed spillover mechanism. ChemCatChem 2:1089–1095

    Article  CAS  Google Scholar 

  12. Takasu Y, Kawaguchi T, Sugimoto W, Murakami Y (2003) Effects of the surface area of carbon support on the characteristics of highly-dispersed Pt-Ru particles as catalysts for methanol oxidation. Electrochim Acta 48:3861–3868

    Article  CAS  Google Scholar 

  13. Zhang Z, Liu J, Gu J, Su L, Cheng L (2014) An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells. Energy Environ Sci 7:2535–2558

    Article  CAS  Google Scholar 

  14. Takabatake Y, Noda Z, Lyth SM, Hayashi A, Sasaki K (2014) Cycle durability of metal oxide supports for PEFC electrocatalysts. Int J Hydrogen Energy 39:5074–5082

    Article  CAS  Google Scholar 

  15. Ioroi T, Akita T, Yamazaki S, Siroma Z, Fujiwara N, Yasuda K (2006) Comparative study of carbon-supported Pt/Mo-oxide and PtRu for use as CO-tolerant anode catalysts. Electrochim Acta 52:491–498

    Article  CAS  Google Scholar 

  16. Elezović NR, Babić BM, Radmilović VR, Gojković SLJ, Krstajić NV, Vračar LJM (2008) Pt/C doped by MoOx as the electrocatalyst for oxygen reduction and methanol oxidation. J Power Sources 175:250–255

    Article  CAS  Google Scholar 

  17. Ordóñez LC, Roquero P, Sebastian PJ, Ramírez J (2007) CO oxidation on carbon-supported PtMo electrocatalysts: effect of the platinum particle size. Int J Hydrogen Energy 32:3147–3153

    Article  CAS  Google Scholar 

  18. Ioroi T, Yasuda K, Siroma Z, Fujiwara N, Miyazaki Y (2003) Enhanced CO-tolerance of carbon-supported platinum and molybdenum oxide anode catalyst. J Electrochem Soc 150:A1225–A1230

    Article  CAS  Google Scholar 

  19. Gurau B, Viswanathan R, Liu R, Lafrenz TJ, Ley KL, Smotkin ES, Reddington E, Sapienza A, Chan BC, Mallouk TE, Sarangapani S (1998) Structural and electrochemical characterization of binary, ternary, and quaternary platinum alloy catalysts for methanol electro-oxidation. J Phys Chem B 102:9997–10003

    Article  CAS  Google Scholar 

  20. Götz M, Wendt H (1998) Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas. Electrochim Acta 43:3637–3644

    Article  Google Scholar 

  21. Martínez-Huerta MV, Rodríguez JL, Tsiouvaras N, Pena MA, Fierro JLG, Pastor E (2008) Novel synthesis method of CO-tolerant PtRu-MoOx nanoparticles: structural characteristics and performance for methanol electrooxidation. Chem Mater 20:4249–4259

    Article  CAS  Google Scholar 

  22. Oliveira Neto A, Franco EG, Arico E, Linardi M, Gonzalez ER (2003) Electro-oxidation of methanol and ethanol on Pt-Ru/C and Pt-Ru-Mo/C electrocatalysts prepared by Bönnemann’s method. J Eur Ceram Soc 23:2987–2992

    Article  CAS  Google Scholar 

  23. Park KW, Choi JH, Ahn KS, Sung YE (2004) PtRu alloy and PtRu-WO3 nanocomposite electrodes for methanol electrooxidation fabricated by a sputtering deposition method. J Phys Chem B 108:5989–5994

    Article  CAS  Google Scholar 

  24. Tian JA, Sun GQ, Jiang LH, Yan SY, Mao Q, Xin Q (2007) Highly stable PtRuTiOx/C anode electrocatalyst for direct methanol fuel cells. Electrochem Commun 9:563–568

    Article  CAS  Google Scholar 

  25. Kim JH, Ishihara A, Mitsushima S, Kamiya N, Ota KI (2007) Catalytic activity of titanium oxide for oxygen reduction reaction as a non-platinum catalyst for PEFC. Electrochim Acta 52:2492–2497

    Article  CAS  Google Scholar 

  26. Lv Q, Yin M, Zhao X, Li C, Liu C, Xing W (2012) Promotion effect of TiO2 on catalytic activity and stability of Pt catalyst for electrooxidation of methanol. J Power Sources 218:93–99

    Article  CAS  Google Scholar 

  27. Vogel W, Timperman L, Alonso-Vante N (2010) Probing metal substrate interaction of Pt nanoparticles: structural XRD analysis and oxygen reduction reaction. Appl Catal A 377:167–173

    Article  CAS  Google Scholar 

  28. Liu X, Chen J, Liu G, Zhang L, Zhang H, Yi B (2010) Enhanced long-term durability of proton exchange membrane fuel cell cathode by employing Pt/TiO2/C catalysts. J Power Sources 195:4098–4103

    Article  CAS  Google Scholar 

  29. von Kraemer S, Wikander K, Lindbergh G, Lundblad A, Palmqvist AEC (2008) Evaluation of TiO2 as catalyst support in Pt-TiO2/C composite cathodes for the proton exchange membrane fuel cell. J Power Sources 180:185–190

    Article  CAS  Google Scholar 

  30. Bauer A, Song C, Ignaszak A, Hui R, Zhang J, Chevallier L, Jones D, Roziére J (2010) Improved stability of mesoporous carbon fuel cell catalyst support through incorporation of TiO2. Electrochim Acta 55:8365–8370

    Article  CAS  Google Scholar 

  31. Mayrhofer KJJ, Hartl K, Juhart V, Arenz M (2009) Degradation of carbon-supported Pt bimetallic nanoparticles by surface segregation. J Am Chem Soc 131:16348–16349

    Article  CAS  PubMed  Google Scholar 

  32. Knights S, Bashyam R, He P, Lauritzen M, Startek C, Colbow V, Cheng TTH, Kolodziej J, Wessel S (2011) PEMFC MEA and system design considerations. ECS Trans 41(1):39–53

    Article  CAS  Google Scholar 

  33. He P, Cheng TTH, Bashyam R, Young AP, Knights S (2010) Relative humidity effect on anode durability in PEMFC startup/shutdown processes. ECS Trans 33(1):1273–1279

    Article  CAS  Google Scholar 

  34. Vass Á, Borbáth I, Pászti Z, Bakos I, Sajó IE, Németh P, Tompos A (2017) Effect of Mo incorporation on electrocatalytic performance of Ti-Mo mixed oxide-carbon composite supported Pt electrocatalysts. React Kinet Mech Cat 121:141–160

    Article  CAS  Google Scholar 

  35. Vass Á, Borbáth I, Bakos I, Pászti Z, Sajó IE, Tompos A (2018) Novel Pt electrocatalysts: multifunctional composite supports for enhanced corrosion resistance and improved CO tolerance. Top Catal 61:1300–1312

    Article  CAS  Google Scholar 

  36. Gubán D, Tompos A, Bakos I, Vass Á, Pászti Z, Szabó EGY, Sajó IE, Borbáth I (2017) Preparation of CO-tolerant anode electrocatalysts for polymer electrolyte membrane fuel cells. Int J Hydrogen Energy 42:13741–13753

    Article  CAS  Google Scholar 

  37. Bakos I, Borbáth I, Vass Á, Pászti Z, Tompos A (2018) Design and investigation of molybdenum modified platinum surfaces for modeling of CO tolerant electrocatalysts. Top Catal 61:1385–1395

    Article  CAS  Google Scholar 

  38. Fairley N (2006) CasaXPS: spectrum processing software for XPS, AES and SIMS. Version 2.3.13, Casa Software Ltd, Cheshire. http://www.casaxps.com. Accessed Dec 2018

  39. Mohai M (2004) XPS MultiQuant: multimodel XPS Quantification Software. Surf Interface Anal 36(8):828–832

    Article  CAS  Google Scholar 

  40. Mohai M (2011) XPS MultiQuant: multi-model X-ray photoelectron spectroscopy quantification program. Version 7(00):92

    Google Scholar 

  41. Wagner CD, Naumkin AV, Kraut-Vass A, Allison JW, Powell CJ, Rumble JR Jr (2003) NIST X-ray photoelectron spectroscopy database. Version 3.4. National Institute of Standards and Technology, Gaithersburg, MD

    Google Scholar 

  42. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corp, Eden Prairie, MN

    Google Scholar 

  43. Hu JE, Liu Z, Eichhorn BW, Jackson GS (2012) CO tolerance of nano-architectured Pt-Mo anode electrocatalysts for PEM fuel cells. Int J Hydrogen Energy 37:11268–11275

    Article  CAS  Google Scholar 

  44. Justin P, Rao GR (2011) Methanol oxidation on MoO3 promoted Pt/C electrocatalyst. Int J Hydrogen Energy 36:5875–5884

    Article  CAS  Google Scholar 

  45. Guillén-Villafuerte O, García G, Rodríguez JL, Pastor E, Guil-López R, Nieto E, Fierro JLG (2013) Preliminary studies of the electrochemical performance of Pt/X@MoO3/C (X = Mo2C, MoO2, Mo0) catalysts for the anode of a DMFC: influence of the Pt loading and Mo-phase. Int J Hydrogen Energy 38:7811–7821

    Article  CAS  Google Scholar 

  46. Godoi DRM, Perez J, Villullas HM (2009) Effects of alloyed and oxide phases on methanol oxidation of Pt-Ru/C nanocatalysts of the same particle size. J Phys Chem C 113:8518–8525

    Article  CAS  Google Scholar 

  47. Iwasita T, Hoster H, John-Anacker A, Lin W, Vielstich W (2000) Methanol oxidation on PtRu electrodes. Influence of surface structure and Pt-Ru atom distribution. Langmuir 16:522–529

    Article  CAS  Google Scholar 

  48. Trasatti S, Buzzanca G (1971) Ruthenium dioxide: A new interesting electrode material. Solid state structure and electrochemical behaviour. J Electroanal Chem 29(2):A1–A5

    Article  Google Scholar 

  49. Lin WF, Zei MS, Eiswirth M, Ertl G, Iwasita T, Vielstich W (1999) Electrocatalytic activity of Ru-modified Pt(111) electrodes toward CO oxidation. J Phys Chem B 103:6968–6977

    Article  CAS  Google Scholar 

  50. Watanabe M, Motoo S (1975) Electrocatalysis by ad-atoms. Part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. J Electroanal Chem 60:267–273

    Article  CAS  Google Scholar 

  51. Chrzanowski W, Wieckowski A (1997) Ultrathin films of ruthenium on low index platinum single crystal surfaces: an electrochemical study. Langmuir 13:5974–5978

    Article  CAS  Google Scholar 

  52. Szabó S, Bakos I (1987) Investigation of ruthenium deposition onto a platinized platinum electrode in sulfuric acid media. J Electroanal Chem 230:233–240

    Article  Google Scholar 

  53. Szabó S, Bakos I, Nagy F (1989) Investigation of ruthenium deposition onto a platinum electrode in hydrochloric acid media. J Electroanal Chem 271:269–277

    Article  Google Scholar 

  54. Micoud F, Maillard F, Gourgaud A, Chatenet M (2009) Unique CO-tolerance of Pt-WOx materials. Electrochem Commun 11:651–654

    Article  CAS  Google Scholar 

  55. Wang D, Subban CV, Wang H, Rus E, DiSalvo FJ, Abruña HD (2010) Highly stable and CO-Tolerant Pt/Ti0.7W0.3O2 electrocatalyst for proton-exchange membrane fuel cells. J Am Chem Soc 132:10218–10220

    Article  CAS  PubMed  Google Scholar 

  56. Samjeske G, Wang H, Löffler T, Baltruschat H (2002) CO and methanol oxidation at Pt-electrodes modified by Mo. Electrochim Acta 47:3681–3692

    Article  CAS  Google Scholar 

  57. Esfahani RAM, Vankova SK, Monteverde Videla AHA, Specchia S (2017) Innovative carbon-free low content Pt catalyst supported on Mo-doped titanium suboxide (Ti3O5-Mo) for stable and durable oxygen reduction reaction. Appl Catal B-Environ 201:419–429

    Article  CAS  Google Scholar 

  58. Wiltshire RJK, King CR, Rose A, Wells PP, Davies H, Hogarth MP, Thompsett D, Theobald B, Mosselmans FW, Roberts M, Russell AE (2009) Effects of composition on structure and activity of PtRu/C catalysts. Phys Chem Chem Phys 11:2305–2313

    Article  CAS  PubMed  Google Scholar 

  59. Gasteiger HA, Markovic N, Ross PN Jr, Cairns EJ (1994) CO electrooxidation on well-characterized Pt-Ru alloys. J Phys Chem 98:617–625

    Article  CAS  Google Scholar 

  60. Guo JW, Zhao TS, Prabhuram J, Chen R, Wong CW (2005) Preparation and characterization of a PtRu/C nanocatalyst for direct methanol fuel cells. Electrochim Acta 51:754–763

    Article  CAS  Google Scholar 

  61. Dinh HY, Ren X, Garzon FH, Zelenay P, Gottesfeld S (2000) Electrocatalysis in direct methanol fuel cells: in situ probing of PtRu anode catalyst surfaces. J Electroanal Chem 491:222–233

    Article  CAS  Google Scholar 

  62. Wang H, Chen S, Wang C, Zhang K, Liu D, Haleem YA, Zheng X, Ge B, Song L (2016) Role of Ru oxidation degree for catalytic activity in bimetallic Pt/Ru nanoparticles. J Phys Chem C 210:6569–6576

    Article  CAS  Google Scholar 

  63. Sen S, Sen F, Gökagac G (2011) Preparation and characterization of nano-sized Pt-Ru/C catalysts and their superior catalytic activities for methanol and ethanol oxidation. Phys Chem Chem Phys 13:6784–6792

    Article  CAS  PubMed  Google Scholar 

  64. Micoud F, Maillard F, Bonnefont A, Job N, Chatenet M (2010) The role of the support in COads monolayer electrooxidation on Pt nanoparticles: pt/WOx vs. Pt/C. Phys Chem Chem Phys 12:1182–1193

    Article  CAS  PubMed  Google Scholar 

  65. Jusys Z, Kaiser J, Behm RJ (2001) Electrooxidation of CO and H2/CO mixtures on a carbon-supported Pt catalyst-a kinetic and mechanistic study by differential electrochemical mass spectrometry. Phys Chem Chem Phys 3:4650–4660

    Article  CAS  Google Scholar 

  66. Rolison DR, Pl Hagans, Swider KE, Long JW (1999) Role of hydrous ruthenium oxide in Pt-Ru direct methanol fuel cell anode electrocatalysts: the importance of mixed electron/proton conductivity. Langmuir 15:774–779

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research within Project No. VEKOP-2.3.2-16-2017-00013 was supported by the European Union and the State of Hungary, co-financed by the European Regional Development Fund. Financial support by the OTKA-project [Grant Number K112034 (István Bakos)] is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Borbáth.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 412 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vass, Á., Borbáth, I., Bakos, I. et al. Stability issues of CO tolerant Pt-based electrocatalysts for polymer electrolyte membrane fuel cells: comparison of Pt/Ti0.8Mo0.2O2–C with PtRu/C. Reac Kinet Mech Cat 126, 679–699 (2019). https://doi.org/10.1007/s11144-018-1512-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-018-1512-z

Keywords

Navigation