Skip to main content
Log in

Insights into the effects of modifying factors on the solvent-free synthesis of FeAPO-5 catalysts towards phenol hydroxylation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A modified solvent-free method has been developed to synthesize FeAPO-5 zeolite catalysts with hierarchical porous structure as well as high crystallinity and iron content. The effects of mechanochemical and low-temperature pretreatment, as well as the addition of hydrogen peroxide and seed crystals on the synthesis of FeAPO-5 were studied in detail. The composition and structural features of relatively pure resultant products were deeply analyzed by XRD, SEM, ICP-AES, CHN analysis, TG–DTA, UV–Vis diffuse reflectance spectroscopy and N2 physisorption. Most importantly, low-temperature pretreatment towards H2O2-containing precursor mixtures can to a great degree improve the crystallinity of FeAPO-5 molecular sieve. Significantly, compared to the conventional micron-sized microporous FeAPO-5 zeolite, the hierarchical FeAPO-5 catalysts created by this modified solvent-free method show superior performance in phenol hydroxylation, in which the one with a high content of framework iron species exhibits the best catalytic performance, giving phenol conversion of about 40% and dihydroxybenzene selectivity of up to 80% at 50 °C within 3 h reaction time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wilson ST, Lok BMT, Messina CA, Cannan TR, Flanigen EM (1982) J Am Chem Soc 104:1146–1147

    Article  CAS  Google Scholar 

  2. Flanigen EM, Lok BMT, Patton RL, Wilson ST (1986) Pure Appl Chem 58:1351–1358

    Article  CAS  Google Scholar 

  3. Corma A (1997) Chem Rev 97:2373–2419

    Article  CAS  Google Scholar 

  4. Davis ME (2014) Chem Mater 26:239–245

    Article  CAS  Google Scholar 

  5. Davis ME, Saldarriaga C, Montes C, Garces JM, Crowdert C (1988) Nature 331:698–699

    Article  CAS  Google Scholar 

  6. Davis ME (2002) Nature 417:813–821

    Article  CAS  Google Scholar 

  7. Miller SJ (1994) Microporous Mater 2:439–449

    Article  CAS  Google Scholar 

  8. Feng P, Bu X, Stucky GD (1997) Nature 388:735–741

    Article  CAS  Google Scholar 

  9. Bibby DM, Dale MP (1985) Nature 317:157–158

    Article  CAS  Google Scholar 

  10. Morris RE, Weigel SJ (1997) Chem Soc Rev 28:309–317

    Article  Google Scholar 

  11. Cooper ER, Andrews CD, Wheatley PS, Webb PB, Wormald P, Morris RE (2004) Nature 430:1012–1016

    Article  CAS  Google Scholar 

  12. Wu Q (2012) Yinying, Ren L, Meng X, Xiao FS. J Am Chem Soc 134:15173–15176

    Article  Google Scholar 

  13. Jin Y, Sun Q, Qi G, Yang C, Xu J, Chen F, Meng X, Deng F, Xiao FS (2013) Angew Chem Int Ed 52:9172–9175

    Article  CAS  Google Scholar 

  14. Sheng N, Chu Y, Xin S, Wang Q, Yi X, Feng Z, Meng X, Liu X, Deng F, Xiao FS (2016) J Am Chem Soc 138:6171–6176

    Article  CAS  Google Scholar 

  15. Jin Y, Chen X, Sun Q, Sheng N, Liu Y, Bian C, Chen F, Meng X, Xiao FS (2014) Chem Eur J 20:17616–17623

    Article  CAS  Google Scholar 

  16. Zhao X, Zhao J, Wen J, An L, Li G, Wang X (2015) Microporous Mesoporous Mater 213:192–196

    Article  CAS  Google Scholar 

  17. Zhao X, Zhao J, Gao X, Zhao Y (2015) RSC Adv 5:95690–95694

    Article  CAS  Google Scholar 

  18. Zhao X, Gao X, Zhang X, Hao Z (2017) Microporous Mesoporous Mater 242:160–165

    Article  Google Scholar 

  19. Iida T, Sato M, Numako C, Nakahira A, Kohara S, Okubo T, Wakihara T (2015) J Mater Chem A 3:6215–6222

    Article  CAS  Google Scholar 

  20. Mintova S, Gilson JP, Valtchev V (2013) Nanoscale 5:6693–6703

    Article  CAS  Google Scholar 

  21. Feng G, Cheng P, Yan W, Boronat M, Li X, Su JH, Wang J, Li Y, Corma A, Xu R (2016) Science 351:6

    Article  Google Scholar 

  22. Iyoki K, Itabashi K, Okubo T (2014) Microporous Mesoporous Mater 189:22–30

    Article  CAS  Google Scholar 

  23. Catana G, Pelgrims J, Schoonheydt RA (1995) Zeolites 15:475–480

    Article  CAS  Google Scholar 

  24. Utchariyajit K, Wongkasemjit S (2010) Microporous Mesoporous Mater 135:116–123

    Article  CAS  Google Scholar 

  25. Auerbach SM, Carrado KA, Dutta PK (2003) Handbook of zeolite science and technology. Marcel Dekker, New York

    Book  Google Scholar 

  26. Samanta S, Giri S, Sastry PU, Mal NK, Manna A, Bhaumik A (2003) Ind Eng Chem Res 42:3012–3018

    Article  CAS  Google Scholar 

  27. Li Y, Feng Z, Lian Y, Sun K, Zhang L, Jia G, Yang Q, Li C (2005) Microporous Mesoporous Mater 84:41–49

    Article  CAS  Google Scholar 

  28. Li LD, Shen Q, Yu JJ, Hao ZP, Xu ZP, Lu GQM (2007) Environ Sci Technol 41:7901–7906

    Article  CAS  Google Scholar 

  29. Kumar MS, Schwidder M, Grünert W, Brückner A (2004) J Catal 227:384–397

    Article  CAS  Google Scholar 

  30. Choi JS, Yoon SS, Jang SH, Ahn WS (2006) Catal Today 111:280–287

    Article  CAS  Google Scholar 

  31. Wang J, Xu J, Li B, Zhang G, Wu N, Mao L (2014) Mater Lett 124:54–56

    Article  CAS  Google Scholar 

  32. Kosri C, Deekamwong K, Sophiphun O, Osakoo N, Chanlek N, Föttinger K, Wittayakun J (2017) React Kinet Mech Catal 121:751–761

    Article  CAS  Google Scholar 

  33. Preethi MEL, Revathi S, Sivakumar T, Manikandan D, Divakar D, Rupa AV, Palanichami M (2008) Catal Lett 120:56–64

    Article  CAS  Google Scholar 

  34. Adam F, Wong JT, Ng EP (2013) Chem Eng J 214:63–67

    Article  CAS  Google Scholar 

  35. Mohamed MM, Eissa NA (2003) Mater Res Bull 38:1993–2007

    Article  CAS  Google Scholar 

  36. Zhao X, Sun Z, Zhu Z, Li A, Li G, Wang X (2013) Catal Lett 143:657–665

    Article  CAS  Google Scholar 

  37. Chellal K, Bachari K, Sadi F (2014) J Cluster Sci 25:523–539

    Article  CAS  Google Scholar 

  38. Liu C, Shan Y, Yang X, Ye X, Yue W (1997) J Catal 168:35–41

    Article  CAS  Google Scholar 

  39. Khodadadi Z, Mahmoudian R (2016) React Kinet Mech Catal 119:685–697

    Article  CAS  Google Scholar 

  40. Kamegawa T, Ando T, Ishiguro Y, Yamashita H (2015) Bull Chem Soc Jpn 88:572–574

    Article  CAS  Google Scholar 

  41. Jin M, Yang R, Zhao M, Li G, Hu C (2014) Ind Eng Chem Res 53:2932–2939

    Article  CAS  Google Scholar 

  42. Li B, Wu K, Yuan T, Han C, Xu J, Pang X (2012) Microporous Mesoporous Mater 151:277–281

    Article  CAS  Google Scholar 

  43. Xin H, Liu J, Fan F, Feng Z, Jia G, Yang Q, Li C (2008) Microporous Mesoporous Mater 113:231–239

    Article  CAS  Google Scholar 

  44. Liu H, Lu G, Guo Y, Guo Y, Wang J (2008) Microporous Mesoporous Mater 108:56–64

    Article  CAS  Google Scholar 

  45. Li B, Xu J, Liu J, Pan Z, Wu Z, Zhou Z, Pang X (2012) Mater Lett 78:147–149

    Article  CAS  Google Scholar 

  46. Zhao X, Zhang X, Hao Z, Gao X, Liu Z (2018) J Porous Mater 25:1007–1016

    Article  CAS  Google Scholar 

  47. Wu C, Kong Y, Gao F, Wu Y, Lu Y, Wang J, Dong L (2008) Microporous Mesoporous Mater 113:163–170

    Article  CAS  Google Scholar 

  48. Jhung SH, Chang JS, Hwang YK, Park SE (2004) J Mater Chem 14:280–285

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21306072 and 21666019) and the Natural Science Foundation of Gansu Province, China (Grant No. 17JR5RA124). We cordially thank the Reviewers and Editors for providing us with valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhong Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 712 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Duan, W., Zhang, X. et al. Insights into the effects of modifying factors on the solvent-free synthesis of FeAPO-5 catalysts towards phenol hydroxylation. Reac Kinet Mech Cat 125, 1055–1070 (2018). https://doi.org/10.1007/s11144-018-1465-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-018-1465-2

Keywords

Navigation