Skip to main content
Log in

Production of light olefins from methanol over modified H-ZSM-5: effect of metal impregnation in high-silica zeolite on product distribution

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Improvement of H-ZSM-5 catalyst to convert methanol to light olefins was studied in this research. High-silica H-ZSM-5 zeolite (Si/Al = 200) was prepared by a hydrothermal method and modified by impregnation with different promoters (Cs, Mg, Ag, Mn, Fe, Ni, Ir, or P). The parent and modified catalysts were characterized using X-ray diffraction (XRD) analysis, inductively coupled plasma (ICP) spectrometry, scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) measurements, Fourier-transform infrared (FT-IR) spectroscopy, and NH3-temperature programmed desorption (TPD) measurements. Performance tests were performed for all samples in a fixed-bed reactor at 480 °C, 1 bar, and methanol weight hourly space velocity (WHSV) of 0.9 h−1, using feed with methanol to water weight ratio of unity. The results revealed that the parent catalyst was stable during the impregnation process and that the promoted catalysts exhibited nearly the same crystallinity and BET surface area compared with the parent sample. The acidity of the catalysts was decreased after impregnation of promoters except for Ag. It was found that the propylene selectivity was strongly dependent on the structure, texture, and acidic properties of the catalysts, being affected by the type of promoter. The phosphorus- and iron-promoted H-ZSM-5 catalysts showed high propylene selectivity (45.7 % and 43.7 %, respectively) and good catalytic stability, which was attributed to the moderate density and distribution of acidic sites over these catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C.D. Chang, A.J. Silvestri, J. Catal. 47, 2 (1977)

    Article  Google Scholar 

  2. M. Stöcker, Microporous Mesoporous Mater. 29, 1 (1999)

    Article  Google Scholar 

  3. F.L. Bleken, S. Chavan, U. Olsbye, M. Boltz, F. Ocampo, B. Louis, Appl. Catal. A 447, 178 (2012)

    Article  CAS  Google Scholar 

  4. D.A. Gunawardena, S.D. Fernando, J. Thermodyn. 2012 (2012)

  5. K.-Y. Lee, H.-K. Lee, S.-K. Ihm, Top. Catal. 53, 3 (2010)

    Google Scholar 

  6. W. Wu, W. Guo, W. Xiao, M. Luo, Fuel Process. Technol. 108, 133 (2013)

    Article  CAS  Google Scholar 

  7. Y. Jiao, C. Jiang, Z. Yang, J. Liu, J. Zhang, Microporous Mesoporous Mater. 181, 201 (2013)

    Article  CAS  Google Scholar 

  8. Q. Wang, L. Wang, H. Wang, Z. Li, H. Wu, G. Li, X. Zhang, S. Zhang, Asia-Pac. J. Chem. Eng. 6, 4 (2011)

    Article  CAS  Google Scholar 

  9. T. Álvaro-Muñoz, C. Márquez-Álvarez, E. Sastre, Appl. Catal. A Gen. 472, 72 (2014)

    Article  CAS  Google Scholar 

  10. B.P. Hereijgers, F. Bleken, M.H. Nilsen, S. Svelle, K.-P. Lillerud, M. Bjørgen, B.M. Weckhuysen, U. Olsbye, J. Catal. 264, 1 (2009)

    Article  CAS  Google Scholar 

  11. J.W. Park, S.J. Kim, M. Seo, S.Y. Kim, Y. Sugi, G. Seo, Appl. Catal. A 349, 1 (2008)

    Article  CAS  Google Scholar 

  12. Q. Zhang, S. Hu, L. Zhang, Z. Wu, Y. Gong, T. Dou, Green Chem. 16, 1 (2014)

    Article  Google Scholar 

  13. S. Ivanova, C. Lebrun, E. Vanhaecke, C. Pham-Huu, B. Louis, J. Catal. 265, 1 (2009)

    Article  CAS  Google Scholar 

  14. J.C. Védrine, A. Auroux, P. Dejaifve, V. Ducarme, H. Hoser, S. Zhou, J. Catal. 73, 1 (1982)

    Article  Google Scholar 

  15. D.V. Vu, J. Jpn. Petrol. Inst. 53, 4 (2010)

    Article  Google Scholar 

  16. J. Liu, C. Zhang, Z. Shen, W. Hua, Y. Tang, W. Shen, Y. Yue, H. Xu, Catal. Commun. 10, 11 (2009)

    Google Scholar 

  17. M. Kaarsholm, F. Joensen, J. Nerlov, R. Cenni, J. Chaouki, G.S. Patience, Chem. Eng. Sci. 62, 18 (2007)

    Article  CAS  Google Scholar 

  18. S. Zhang, B. Zhang, Z. Gao, Y. Han, Ind. Eng. Chem. Res. 49, 5 (2010)

    Google Scholar 

  19. S. Papari, A. Mohammadrezaei, M. Asadi, R. Golhosseini, A. Naderifar, Catal. Commun. 16, 1 (2011)

    Article  CAS  Google Scholar 

  20. A. Mohammadrezaei, S. Papari, M. Asadi, A. Naderifar, R. Golhosseini, Front. Chem. Sci. Eng. 6, 3 (2012)

    Article  CAS  Google Scholar 

  21. B. Valle, A. Alonso, A. Atutxa, A. Gayubo, J. Bilbao, Catal. Today 106, 1 (2005)

    Article  CAS  Google Scholar 

  22. R.L.V. Mao, P. Lévesque, B. Sjiariel, Can. J. Chem. Eng. 64, 3 (1986)

    Article  Google Scholar 

  23. A.J. Koekkoek, H. Xin, Q. Yang, C. Li, E.J. Hensen, Microporous Mesoporous Mater. 145, 1 (2011)

    Article  CAS  Google Scholar 

  24. P. Li, W. Zhang, X. Han, X. Bao, Catal. Lett. 134, 1 (2010)

    Article  CAS  Google Scholar 

  25. M. Salmasi, S. Fatemi, A.T. Najafabadi, J. Ind. Eng. Chem. 17, 4 (2011)

    Article  CAS  Google Scholar 

  26. J. Jansen, F. Van der Gaag, H. Van Bekkum, Zeolites 4, 4 (1984)

    Article  Google Scholar 

  27. S.N.A.M. Abrishamkar, H. Kazemian, Z. Anorg. Allg. Chem. 637 (2011)

  28. J. Chen, Z. Feng, P. Ying, C. Li, J. Phys. Chem. B 108, 34 (2004)

    Google Scholar 

  29. J.C. Védrine, A. Auroux, V. Bolis, P. Dejaifve, C. Naccache, P. Wierzchowski, E.G. Derouane, J.B. Nagy, J.-P. Gilson, J.H. van Hooff, J. Catal. 59, 2 (1979)

    Article  Google Scholar 

  30. G. Coudurier, J. Vedrine, Pure Appl. Chem. 58, 10 (1986)

    Article  Google Scholar 

  31. G. Martins, G. Berlier, C. Bisio, S. Coluccia, H. Pastore, L. Marchese, J. Phys. Chem. C 112, 18 (2008)

    Article  CAS  Google Scholar 

  32. J. Figueiredo, M. Pereira, M. Freitas, J. Orfao, Carbon 37, 9 (1999)

    Google Scholar 

  33. Z. Song, A. Takahashi, I. Nakamura, T. Fujitani, Appl. Catal. A 384, 1 (2010)

    Article  CAS  Google Scholar 

  34. Y.-J. Lee, J.M. Kim, J.W. Bae, C.-H. Shin, K.-W. Jun, Fuel 88, 10 (2009)

    Google Scholar 

  35. D. Zhang, Y. Wei, L. Xu, F. Chang, Z. Liu, S. Meng, B.-L. Su, Z. Liu, Microporous Mesoporous Mater. 116, 1 (2008)

    Article  CAS  Google Scholar 

  36. W. Dai, X. Wang, G. Wu, N. Guan, M. Hunger, L. Li, ACS Catal. 1, 4 (2011)

    Google Scholar 

  37. X. Wang, W. Dai, G. Wu, L. Li, N. Guan, M. Hunger, Microporous Mesoporous Mater. 151, 99 (2012)

    Article  CAS  Google Scholar 

  38. Z.Y. Zakaria, J. Linnekoski, N. Amin, Chem. Eng. J. 207, 803 (2012)

    Article  CAS  Google Scholar 

  39. K. Suzuki, PhD thesis, Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 2009

  40. L. Ye, F. Cao, W. Ying, D. Fang, Q. Sun, J. Porous Mater. 18, 2 (2011)

    Article  CAS  Google Scholar 

  41. J. Li, Y. Wei, Y. Qi, P. Tian, B. Li, Y. He, F. Chang, X. Sun, Z. Liu, Catal. Today 164, 1 (2011)

    Article  CAS  Google Scholar 

  42. S.M. Campbell, X.-Z. Jiang, R.F. Howe, Microporous Mesoporous Mater. 29, 1 (1999)

    Article  Google Scholar 

  43. Y. Sun, H. Yan, D. Liu, D. Zhao, Catal. Commun. 9, 5 (2008)

    Article  CAS  Google Scholar 

  44. J. Zhang, H. Zhang, X. Yang, Z. Huang, W. Cao, J. Nat. Gas Chem. 20, 3 (2011)

    Google Scholar 

  45. Z. Liu, G. Chen, J. Liang, Q. Wang, G. Cai, Studies in Surface Science and Catalysis (Elsevier, Amsterdam, 1991), p. 815

    Google Scholar 

  46. G. Seo, R. Ryoo, J. Catal. 124, 1 (1990)

    Article  Google Scholar 

  47. S. Svelle, U. Olsbye, F. Joensen, M. Bjørgen, J. Phys. Chem. C 111, 49 (2007)

    Article  CAS  Google Scholar 

  48. D. Mier, A.T. Aguayo, A.G. Gayubo, M. Olazar, J. Bilbao, Chem. Eng. J. 160, 2 (2010)

    Article  CAS  Google Scholar 

  49. H. Hu, F. Cao, W. Ying, Q. Sun, D. Fang, Chem. Eng. J. 160, 2 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Petrochemical Research and Technology Company (Tehran, Iran) and Tarbiat Modares University (Tehran, Iran) for financial support of the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Gorzin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorzin, F., Yaripour, F. Production of light olefins from methanol over modified H-ZSM-5: effect of metal impregnation in high-silica zeolite on product distribution. Res Chem Intermed 45, 261–285 (2019). https://doi.org/10.1007/s11164-018-3601-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-018-3601-z

Keywords

Navigation