Skip to main content
Log in

Effect of acidity and porosity of hierarchical HBEA zeolite on catalytic stability of α-methylnaphthalene isomerization

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Hierarchical HBEA catalysts were fabricated through alkaline treatment and evaluated in a fixed-bed reactor. The relative crystallinity, pore property, Si/Al molar ratio, coke formation and structure of catalysts were investigated by the methods including X-ray diffraction, N2 physisorption, X-ray fluorescence, thermogravimetric analysis and transmission electron microscope, respectively. The acidity of catalysts was studied by Fourier transform infrared spectrometry using pyridine as the probe molecule. These results demonstrated that pure NaOH treatment improved the mesoporosity of catalyst, while decreased the β-methylnaphthalene selectivity and catalyst stability due to the partially destroyed framework and an increase in the concentration of Lewis acid sites. The Lewis acid sites are responsible for the hydride transfer and subsequent reaction that form coke. In contrast, the presence of tetra-propyl-ammonium hydroxide in the mixed-alkali treatment resulted in regular mesopores development, preserved intrinsic zeolite properties and Lewis sites proportion, leading to the maintained β-MN selectivity and coke deposition rate. The increased mesoporosity and strong Brönsted acid sites amount per number of coke were responsible for the improved coke tolerance of mixed-alkali treated HBEA, and thus its deactivation rate was 41.7% lower than that of HBEA catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L. Jin, T. Xie, S. Liu, Y. Li, H. Hu, Catal. Commun. 75, 32–36 (2016)

    Article  CAS  Google Scholar 

  2. C. Zhang, X.W. Guo, C.S. Song, S.Q. Zhao, X.S. Wang, Catal. Today 149, 196–201 (2010)

    Article  CAS  Google Scholar 

  3. M.A. Sanhoob, O. Muraza, T. Tago, T. Taniguchi, G. Watanabe, T. Masuda, Res. Chem. Intermed. 42, 6437–6448 (2016)

    Article  CAS  Google Scholar 

  4. X.W. Nie, M.J. Janik, X.W. Guo, C.S. Song, J. Phys. Chem. C 116, 4071–4082 (2012)

    Article  CAS  Google Scholar 

  5. K. Bobuatong, M. Probst, J. Limtrakul, J. Phys. Chem. C 114, 21611–21617 (2010)

    Article  CAS  Google Scholar 

  6. C. Li, L. Li, W. Wu, D. Wang, A.V. Toktarev, O.V. Kikhtyanin, G.V. Echevskii, Proced. Eng. 18, 200–205 (2011)

    Article  CAS  Google Scholar 

  7. X. Bai, K. Sun, W. Wu, P. Yan, J. Yang, J. Mol. Catal. A 314, 81–87 (2009)

    Article  CAS  Google Scholar 

  8. L.D. Lillwitz, Appl. Catal. A 221, 337–358 (2001)

    Article  CAS  Google Scholar 

  9. H. Sun, S.J. Shi, Z.G. Gu, Chin. J. Chem. Eng. 25, 149–152 (2017)

    Article  CAS  Google Scholar 

  10. Z. Popova, M. Yankov, L. Dimitrov, I. Chervenkov, React. Kinet. Catal. Lett. 52, 51–58 (1994)

    Article  CAS  Google Scholar 

  11. E. Fedorynska, P. Winiarek, React. Kinet. Catal. Lett. 54, 73–79 (1995)

    Article  CAS  Google Scholar 

  12. Y. Takagi, T. Nobusawa, T. Suzuki, Kagaku Kogaku Ronbunshu 21, 1096–1103 (1995)

    Article  CAS  Google Scholar 

  13. T.L. Li, X.Y. Liu, X.S. Wang, Chin. J. Catal. 18, 221–224 (1997)

    CAS  Google Scholar 

  14. E. Rombi, R. Monaci, V. Solinas, Catal. Today 52, 321–330 (1999)

    Article  CAS  Google Scholar 

  15. J. Weitkamp, M. Neuber, Stud. Surf. Sci. Catal. 60, 291–301 (1991)

    Article  CAS  Google Scholar 

  16. S. Abelló, A. Bonilla, J. Pérez-Ramírez, Appl. Catal. A 364, 191–198 (2009)

    Article  CAS  Google Scholar 

  17. C. Christensen, K. Johannsen, E. Tornqvist, I. Schmidt, H. Topsoe, C. Christensen, Catal. Today 128, 117–122 (2007)

    Article  CAS  Google Scholar 

  18. H. Sun, X. Huang, F. Wang, Z.G. Gu, Res. Chem. Intermed. 43, 4697–4710 (2017)

    Article  CAS  Google Scholar 

  19. D. Verboekend, J. Pérez-Ramírez, Catal. Sci. Technol. 1, 879–890 (2011)

    Article  CAS  Google Scholar 

  20. Y.S. Tao, K. Hirofumi, A. Lloyd, K. Katsumi, Chem. Rev. 106, 896–910 (2006)

    Article  CAS  PubMed  Google Scholar 

  21. L.G. Possato, R.N. Diniz, T. Garetto, S.H. Pulcinelli, C.V. Santilli, L. Martins, J. Catal. 300, 102–112 (2013)

    Article  CAS  Google Scholar 

  22. K.P.D. Jong, J. Zecevic, H. Friedrich, P.E.D. Jongh, M. Bulut, S.V. Donk, R. Kenmogne, A. Finiels, V. Hulea, F. Fajula, Angew. Chem. Int. Ed. 49, 10074–10078 (2010)

    Article  CAS  Google Scholar 

  23. F. Schmidt, M.R. Lohe, B. Büchner, F. Giordanino, F. Bonino, S. Kaskel, Microporous Mesoporous Mater. 165, 148–157 (2013)

    Article  CAS  Google Scholar 

  24. R. Caicedo-Realpe, J. Pérez-Ramírez, Microporous Mesoporous Mater. 128, 91–100 (2010)

    Article  CAS  Google Scholar 

  25. A.N.C.V. Laak, R.W. Gosselink, S.L. Sagala, J.D. Meeldijk, P.E.D. Jongh, K.P.D. Jong, Appl. Catal. A 382, 65–72 (2010)

    Article  CAS  Google Scholar 

  26. D. Verboekend, R. Caicedo-Realpe, A. Bonilla, M. Santiago, J. Pérez-Ramírez, Chem. Mater. 22, 4679–4689 (2010)

    Article  CAS  Google Scholar 

  27. J. Groen, T. Sano, J. Moulijn, J. Perezramirez, J. Catal. 251, 21–27 (2007)

    Article  CAS  Google Scholar 

  28. S. Svelle, L. Sommer, K. Barbera, P.N.R. Vennestrøm, U. Olsbye, K.P. Lillerud, S. Bordiga, Y.-H. Pan, P. Beato, Catal. Today 168, 38–47 (2011)

    Article  CAS  Google Scholar 

  29. J.C. Groen, S. Abelló, L.A. Villaescusa, J. Pérez-Ramírez, Microporous Mesoporous Mater. 114, 93–102 (2008)

    Article  CAS  Google Scholar 

  30. K. Tarach, K. Góra-Marek, J. Tekla, K. Brylewska, J. Datka, K. Mlekodaj, W. Makowski, M.C. Igualada López, J. Martínez Triguero, F. Rey, J. Catal. 312, 46–57 (2014)

    Article  CAS  Google Scholar 

  31. Y.H. Wu, F.P. Tian, J. Liu, D. Song, C.Y. Jia, Y.Y. Chen, Microporous Mesoporous Mater. 162, 168–174 (2012)

    Article  CAS  Google Scholar 

  32. F.P. Tian, Y.H. Wu, Q.C. Shen, X. Li, Y.Y. Chen, C.G. Meng, Microporous Mesoporous Mater. 173, 129–138 (2013)

    Article  CAS  Google Scholar 

  33. Y. Wang, Y.Y. Sun, C. Lancelot, C. Lamonier, J.-C. Morin, B. Revel, L. Delevoye, A. Rives, Microporous Mesoporous Mater. 206, 42–51 (2015)

    Article  CAS  Google Scholar 

  34. A.N.C.V. Laak, S.L. Sagala, J. Zečević, H. Friedrich, P.E.D. Jongh, K.P.D. Jong, J. Catal. 276, 170–180 (2010)

    Article  CAS  Google Scholar 

  35. D. Verboekend, G. Vilé, P.J. Ramírez, Cryst. Growth Des. 12, 3123–3132 (2012)

    Article  CAS  Google Scholar 

  36. A.N.C.V. Laak, L. Zhang, A.N. Parvulescu, P.C.A. Bruijnincx, B.M. Weckhuysen, K.P.D. Jong, P.E.D. Jongh, Catal. Today 168, 48–56 (2011)

    Article  CAS  Google Scholar 

  37. K. Sadowska, A. Wach, Z. Olejniczak, P. Kuśtrowski, J. Datka, Microporous Mesoporous Mater. 167, 82–88 (2013)

    Article  CAS  Google Scholar 

  38. K. Sadowska, K. Góra-Marek, M. Drozdek, P. Kuśtrowski, J. Datka, J.M. Triguero, F. Rey, Microporous Mesoporous Mater. 168, 195–205 (2013)

    Article  CAS  Google Scholar 

  39. J. Pérez-Ramírez, D. Verboekend, A. Bonilla, S. Abelló, Adv. Funct. Mater. 19, 3972–3979 (2009)

    Article  CAS  Google Scholar 

  40. M. Tamura, K.I. Shimizu, A. Satsuma, Appl. Catal. A 433–434, 135–145 (2012)

    Article  CAS  Google Scholar 

  41. L. Forni, V. Solinas, R. Monaci, Ind. Eng. Chem. Res. 26, 1860–1864 (1987)

    Article  CAS  Google Scholar 

  42. S.R. Mistry, R.S. Joshi, K.C. Maheria, J. Chem. Sci. 123, 427–432 (2011)

    Article  CAS  Google Scholar 

  43. S.K. Saxena, A.a.H. Al-Muhtaseb, N. Viswanadham, Fuel 159, 837–844 (2015)

    Article  CAS  Google Scholar 

  44. M.A. Camblor, A. Corma, S. Valencia, Microporous Mesoporous Mater. 25, 59–74 (1998)

    Article  CAS  Google Scholar 

  45. Y. Wang, T. Yokoi, S. Namba, T. Tatsumi, Catalysts 6, 8–27 (2016)

    Article  CAS  Google Scholar 

  46. J.P. Marques, I. Gener, P. Ayrault, J.C. Bordado, J.M. Lopes, F.R. Ribeiro, M. Guisnet, Microporous Mesoporous Mater. 60, 251–262 (2003)

    Article  CAS  Google Scholar 

  47. J.C. Groen, J.A. Moulijn, J. Pérez-Ramírez, Microporous Mesoporous Mater. 87, 153–161 (2005)

    Article  CAS  Google Scholar 

  48. H.P. Decolatti, B.O.D. Costa, C.A. Querini, Microporous Mesoporous Mater. 204, 180–189 (2015)

    Article  CAS  Google Scholar 

  49. Y.L. Wang, L. Xu, Z.X. Yu, X.Z. Zhang, Z.M. Liu, Catal. Commun. 9, 1982–1986 (2008)

    Article  CAS  Google Scholar 

  50. C. Kumsapaya, K. Bobuatong, P. Khongpracha, Y. Tantirungrotechai, J. Limtrakul, J. Phys. Chem. C 113, 16128–16137 (2009)

    Article  CAS  Google Scholar 

  51. C.J.V. Oers, K. Góra-Marek, K. Sadowska, M. Mertens, V. Meynen, J. Datka, P. Cool, Chem. Eng. J. 237, 372–379 (2014)

    Article  CAS  Google Scholar 

  52. H. Mochizuki, T. Yokoi, H. Imai, S. Namba, J.N. Kondo, T. Tatsumi, Appl. Catal. A 449, 188–197 (2012)

    Article  CAS  Google Scholar 

  53. B. Ma, C. Zhao, Green Chem. 17, 1692–1701 (2015)

    Article  CAS  Google Scholar 

  54. P. Cañizares, A. Carrero, Appl. Catal. A 248, 227–237 (2003)

    Article  CAS  Google Scholar 

  55. Y. Wang, R. Otomo, T. Tatsumi, T. Yokoi, Microporous Mesoporous Mater. 220, 275–281 (2016)

    Article  CAS  Google Scholar 

  56. C. Fernandez, I. Stan, J.P. Gilson, K. Thomas, A. Vicente, A. Bonilla, J. Perez-Ramirez, Chem. Eur. J. 16, 6224–6233 (2010)

    Article  CAS  PubMed  Google Scholar 

  57. Z.H. Chen, Y.F. Feng, T.X. Tong, A.W. Zeng, Appl. Catal. A 482, 92–98 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project was supported by Jiangsu Key Laboratory for Biomass Energy and Material (JSBEM-S-201506), Guangdong Innovative and Entrepreneurial Research Team Program (2016ZT06N467), National Natural Science Foundation of China (31770629) and National Nonprofit Institute Research Grant of CAFINT (CAFYBB2017SY031).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Sun or Zhenggui Gu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 592 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Wang, A., Sun, K. et al. Effect of acidity and porosity of hierarchical HBEA zeolite on catalytic stability of α-methylnaphthalene isomerization. J Porous Mater 26, 961–970 (2019). https://doi.org/10.1007/s10934-018-0693-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-018-0693-1

Keywords

Navigation