Skip to main content
Log in

Hydrodesulfurization NiMo catalysts over gamma-alumina prepared mechanochemically

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The novel γ-Al2O3 synthesis by mechanochemical activation of aluminum nitrate hydrate was applied to prepare hydrodesulfurization (HDS) NiMo catalysts. Impregnation techniques using the complex made by dissolution of nitrilotriacetic acid (NTA), ammonium heptamolybdate and nickel nitrate and the Anderson-type heteropolyoxymolybdate ((NH4)4Ni(OH)6Mo6O18) complex were compared with conventional impregnation using subsequent deposition of ammonium heptamolybdate (first) and nickel nitrate (second) with calcination in between. Properties of the support and HDS catalysts were studied by N2 physisorption, Raman spectroscopy, H2 temperature-programmed reduction (H2-TPR), O2 chemisorption and X-ray photoelectron spectroscopy (XPS). Both catalysts prepared from the complexes were at least 1.5-fold more active in the HDS reaction of 1-benzothiophene (360 °C and 1.6 MPa) than the catalyst prepared conventionally. The most promising preparation method for gaining highly active HDS catalyst on the studied γ-Al2O3 was the deposition of (NH4)4Ni(OH)6Mo6O18. This catalyst exhibited about 1.9 and 1.4 higher HDS activity in comparison to the conventionally prepared NiMo and reference commercial NiMo counterparts, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jirátová K, Spojakina A, Kaluža L, Palcheva R, Balabánová J, Tyuliev G (2016) Chin J Catal 37:258–267

    Article  CAS  Google Scholar 

  2. Jirátová K, Spojakina A, Tyuliev G, Balabánová J, Kaluža L, Palcheva R (2015) In: Kalenda P, Lubojatsky J (eds) Proceedings of the 3rd International Conference on Chemical Technology, Czech Society of Industrial Chemistry, Prague

  3. Giraldo SA, Centeno A (2008) Catal Today 133–135:255–260

    Article  CAS  Google Scholar 

  4. Ramirez J, Castillo P, Cedefio L, Cuevas R, Castillo M, Palacios JM, Lopez-Agudo A (1995) Appl Catal A Gen 132:317–334

    Article  CAS  Google Scholar 

  5. Perez-Martinez DJ, Eloy P, Gaigneaux EM, Giraldo SA, Centeno A (2010) Appl Catal A Gen 390:59–70

    Article  CAS  Google Scholar 

  6. Qian EW, Chen N, Gong SF (2014) J Mol Catal A Chem 387:76–85

    Article  CAS  Google Scholar 

  7. Duan A, Li T, Zhao Z, Liu B, Zhou X, Jiang G, Liu J, Wei Y, Pan H (2015) Appl Catal B Environ 165:763–773

    Article  CAS  Google Scholar 

  8. Dugulan AI, Van Veen JAR, Hensen EJM (2013) Appl Catal B Environ 142:178–186

    Article  CAS  Google Scholar 

  9. Liu B, Chai Y, Wang Y, Zhang T, Liu Y, Liu C (2010) Appl Catal A Gen 388:248–255

    Article  CAS  Google Scholar 

  10. Afanasiev P (2006) Appl Catal A Gen 303:110–115

    Article  CAS  Google Scholar 

  11. Kaluža L, Gulková D, Vít Z, Zdražil M (2015) Appl Catal B Environ 162:430–436

    Article  CAS  Google Scholar 

  12. Baston EP, Franca AB, Neto AVD, Urquieta-Gonzalez EA (2015) Catal Today 246:184–190

    Article  CAS  Google Scholar 

  13. Baston EP, Urquieta-Gonzalez EA (2010) Stud Surf Sci Catal 175:671–674

    Article  CAS  Google Scholar 

  14. Escobar J, Barrera MC, De Los Reyes JA, Toledo JA, Santes V, Colin JA (2008) J Mol Catal A Chem 287:33–40

    Article  CAS  Google Scholar 

  15. Al-Dalama K, Stanislaus A (2011) Thermochim Acta 520:67–74

    Article  CAS  Google Scholar 

  16. Budukva SV, Klimov OV, Chesalov YA, Prosvirin IP, Larina TV, Noskov AS (2018) Catal Lett 148:1525–1534

    Article  CAS  Google Scholar 

  17. Medici L, Prins R (1996) J Catal 163:38–49

    Article  CAS  Google Scholar 

  18. Palcheva R, Kaluža L, Dimitrov L, Tyuliev G, Avdeev G, Jirátová K, Spojakina A (2016) Appl Catal A Gen 520:24–34

    Article  CAS  Google Scholar 

  19. Ayala M, Esneyder P, Quintana P, Gonzalez-Garcia G, Diaz C (2015) RSC Adv 5:102652–102662

    Article  Google Scholar 

  20. Spojakina A, Kraleva E, Jiratova K, Petrov L (2005) Appl Catal A Gen 288:10–17

    Article  CAS  Google Scholar 

  21. Spojakina A, Jiratova K, Kostova N, Kocianova J, Stamenova M (2003) Kinet Katal 44:813–818

    Article  CAS  Google Scholar 

  22. Palcheva R, Spojakina A, Dimitrov L, Jiratova K (2009) Micropor Mesopor Materials 122:128–134

    Article  CAS  Google Scholar 

  23. Nikulshin PA, Tomina NN, Pimerzin AA, Kucherov AV, Kogan VM (2010) Catal Today 149:82–90

    Article  CAS  Google Scholar 

  24. Nikulshin P, Mozhaev A, Lancelot C, Blanchard P, Payen E, Lamonier C (2016) C R Chimie 19:1276–1285

    Article  CAS  Google Scholar 

  25. Nikulshin PA, Salnikov VA, Mozhaev AV, Minaev PP, Kogan VM, Pimerzin AA (2014) J Catal 309:386–396

    Article  CAS  Google Scholar 

  26. Nikulshin PA, Mozhaev AV, Ishutenko DI, Minaev PP, Lyashenko AI, Pimerzin AA (2012) Kinet Catal 53:620–631

    Article  CAS  Google Scholar 

  27. Ishutenko D, Mozhaev A, Salnikov V, Nikulshin P (2016) Reac Kinet Mech Cat 119:615–627

    Article  CAS  Google Scholar 

  28. Blanchard P, Lamonier C, Griboval A, Payen E (2007) Appl Catal A Gen 322:33–45

    Article  CAS  Google Scholar 

  29. Palcheva R, Spojakina A, Jiratova K, Kaluza L (2010) Catal Lett 137:216–223

    Article  CAS  Google Scholar 

  30. Palcheva R, Kaluza L, Spojakina A, Jiratova K, Tyuliev G (2012) Chin J Catal 33:952–961

    Article  CAS  Google Scholar 

  31. Nomiya K, Takahashi T, Shirai T, Miwa M (1987) Polyhedron 6:213–218

    Article  CAS  Google Scholar 

  32. Schneider P (1995) Appl Catal A Gen 129:157–165

    Article  CAS  Google Scholar 

  33. Djuricic B, Pickering S (1999) J Euro Ceram Society 19(1999):1925–1934

    Article  CAS  Google Scholar 

  34. Wu Z, Shen Y, Dong Y, Jiang J (2009) J Alloys Comp 467:600–604

    Article  CAS  Google Scholar 

  35. Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity. Academic Press, London

    Google Scholar 

  36. Koizumi N, Mochizuki T, Yamada M (2009) Catal Today 141:34–42

    Article  CAS  Google Scholar 

  37. Cattaneo R, Shido T, Prins R (1999) J Catal 185:199–212

    Article  CAS  Google Scholar 

  38. Cattaneo R, Weber T, Shido T, Prins R (2000) J Catal 191:225–236

    Article  CAS  Google Scholar 

  39. Ohta Y, Shimizu T, Homma T, Yamada M (1999) Stud Surf Sci Catal 127:161

    Article  CAS  Google Scholar 

  40. Coulier L, De Beer VHJ, Van Veen JAR, Niemantsverdriet JW (2001) J Catal 197:26–33

    Article  CAS  Google Scholar 

  41. Kaluža L, Zdražil M, Vít Z (2009) React Kinet Catal Lett 97:307–313

    Article  CAS  Google Scholar 

  42. Kaluža L, Vít Z, Zdražil M (2005) Appl Catal A Gen 282:247–253

    Article  CAS  Google Scholar 

  43. Calais C, Matsubayashi N, Geantet C, Yoshimura Y, Shimada H, Nishijima A, Lacroix M, Breysse M (1998) J Catal 174:130–141

    Article  CAS  Google Scholar 

  44. Magnus PJ, Riezebos A, Van Langeveld AD, Mouljin JA (1995) J Catal 151:178–191

    Article  Google Scholar 

  45. McGarvey JB, Kasztelan S (1994) J Catal 148:149–156

    Article  CAS  Google Scholar 

  46. Scheffer B, Dekker NJJ, Mangnus PJ, Mouljin JA (1990) J Catal 121:31–46

    Article  CAS  Google Scholar 

  47. Lacroix M, Dumonteil C, Breysse M, Kasztelan S (1999) J Catal 185:219–222

    Article  CAS  Google Scholar 

  48. Lewis R, Edwards HGM (2001) Handbook of Raman Spectroscopy. Marcel Dekker Inc, New York

    Book  Google Scholar 

  49. Golasa K, Grzeszczyk M, Korona KP, Bozek R, Binder J, Szczytko J, Wysmolek A, Babinski A (2013) Acta Phys Pol A 124:849–851

    Article  CAS  Google Scholar 

  50. Mestl G, Srinivasan TKK (1998) Cat Rev Sci Eng 40:451–570

    Article  CAS  Google Scholar 

  51. Debecker DP, Stoyanova M, Rodemerck U, Gaigneaux EM (2011) J Mol Catal A 340:65–76

    Article  CAS  Google Scholar 

  52. Zingg DS, Makovsky LE, Tischer RE, Brown FR, Hercules DM (1980) J Phys Chem 84:2898–2906

    Article  CAS  Google Scholar 

  53. Dufresne P, Payen P, Grimblot J, Bonnelle JP (1981) J Phys Chem 85:2344–2351

    Article  CAS  Google Scholar 

  54. Xu Z, Shi X, Zhang Q, Zhai W, Li X, Yao J, Song S, Chen L, Xiao Y, Zhu Q (2014) Tribol Trans 57:1017–1027

    Article  CAS  Google Scholar 

  55. Kumari L, Ma YR, Tsai CC, Lin YW, Wu SY, Cheng KW, Liou Y (2007) Nanotechnology 18:115717–115723

    Article  CAS  Google Scholar 

  56. Murase K, Ando H, Matsubara E, Hirato T, Awakura Y (2000) J Electrochem Soc 147:2210–2217

    Article  CAS  Google Scholar 

  57. Gandubert AD, Krebs E, Legens C, Costa D, Guillaume D, Raybaud P (2008) Catal Today 130:149–159

    Article  CAS  Google Scholar 

  58. Gandubert AD, Legens C, Guillaume D, Rebours S, Payen E (2006) Surf Interface Anal 38:206–209

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Scientific Cooperation Funds of Bulgarian and Czech Academies of Sciences are gratefully acknowledged. L.K. and D.G. appreciate and acknowledge the Czech Science Foundation (project no. 17-22490S) and Albemarle (The Netherlands), Akzo Chemicals (The Netherlands) and BASF (Germany) companies for financial support and providing of reference materials, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luděk Kaluža.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaluža, L., Jirátová, K., Tyuliev, G. et al. Hydrodesulfurization NiMo catalysts over gamma-alumina prepared mechanochemically. Reac Kinet Mech Cat 125, 319–337 (2018). https://doi.org/10.1007/s11144-018-1436-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-018-1436-7

Keywords

Navigation