Skip to main content
Log in

Reactivation of CoMo/Al2O3 Hydrotreating Catalysts by Citric Acid

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Commercial liquid-phase-sulfided type II CoMo/Al2O3 catalyst was reactivated after commercial operation and oxidative regeneration. For this purpose, the use of citric acid (CA) that reactivates a regenerated CoMo/Al2O3 catalyst was studied. The study of the reactivated catalyst was carried out by means of UV-DRS, FTIR, Raman spectroscopy, XRD, XPS, and HTREM. The catalytic activity was estimated in the HDS of straight-run gasoil (SRGO). It was shown that the treatment of the catalyst with CA leads to the formation of a Co–Mo complex compound and significantly reduces the proportion of β-CoMoO4 and MoO3 in the catalyst. Eventually, this leads to the formation of CoMoS phase type II in a higher proportion enhancing the HDS catalytic properties.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

UV-DRS:

Ultra-violet diffuse reflectance spectroscopy

XRD:

X-ray diffraction

FTIR:

Fourier transform infrared spectroscopy

XPS:

X-ray photoelectron spectroscopy

HRTEM:

High-resolution transmission electron microscopy

BE:

Binding energy

CA:

Citric acid

HDS:

Hydrodesulfurization

References

  1. Song C (2003) Catal Today 86:211. https://doi.org/10.1016/S0920-5861(03)00412-7

    Article  CAS  Google Scholar 

  2. Stanislaus A, Marafi A, Rana MS (2010) Catal Today 153:1–68. https://doi.org/10.1016/j.cattod.2010.05.011

    Article  CAS  Google Scholar 

  3. Bouwens SMAM, Van Zon FBM, Vandijk MP et al (1994) J Catal 146:375–393. https://doi.org/10.1006/jcat.1994.1076

    Article  CAS  Google Scholar 

  4. Topsøe H, Clausen BS, Topsøe NY, Zeuthen P (1989) Stud Surf Sci Catal 53:77–102. https://doi.org/10.1016/S0167-2991(08)61061-7

    Article  Google Scholar 

  5. Lauritsen JV, Kibsgaard J, Olesen GH et al (2007) J Catal 249:220. https://doi.org/10.1016/j.jcat.2007.04.013

    Article  CAS  Google Scholar 

  6. Osipov LN, Gimbutas AA, Chagovets AN et al (1995) Chem Technol Fuels Oils 31:210–213. https://doi.org/10.1007/BF00727191

    Article  Google Scholar 

  7. Chang T (1998) Oil Gas J 96:49

    Google Scholar 

  8. Dufresne P (2007) Appl Catal A 322:67–75. https://doi.org/10.1016/j.apcata.2007.01.013

    Article  CAS  Google Scholar 

  9. Dufresne P, Brahma N (1995) Bull Soc Chim Belges 104:339–346. https://doi.org/10.1002/bscb.19951040424

    Article  CAS  Google Scholar 

  10. Calderón-Magdaleno M, Mendoza-Nieto JA, Klimova TE (2014) Catal Today 220–222:78–88. https://doi.org/10.1016/j.cattod.2013.06.002

    Article  Google Scholar 

  11. Lélias MA, Kooyman PJ, Mariey L et al (2009) J Catal 267:14–23. https://doi.org/10.1016/j.jcat.2009.07.006

    Article  Google Scholar 

  12. Costa V, Marchand K, Digne M, Geantet C (2008) Catal Today 130:69–74. https://doi.org/10.1016/j.cattod.2007.05.013

    Article  CAS  Google Scholar 

  13. Klimov OV, Pashigreva AV, Bukhtiyarova GA et al (2010) Catal Today 150:196–206. https://doi.org/10.1016/j.cattod.2009.07.095

    Article  CAS  Google Scholar 

  14. Topsøe H (2007) Appl Catal A 322:3–8. https://doi.org/10.1016/j.apcata.2007.01.002

    Article  Google Scholar 

  15. Eijsbouts S (2001) Int Pat WO 01/002092

  16. Jansen MA (2011) US Patent 20110094939 A1

  17. Ginestra J, Seamans J, Lee K (2005) Patent US 2005/159295

  18. Uekusa K (2004) Sumitomo Metal Mining Company Limited. EP Patent 1418002

  19. Bui N-Q, Geantet C, Berhault G (2015) J Catal 330:374. https://doi.org/10.1016/j.jcat.2015.07.031

    Article  CAS  Google Scholar 

  20. Zhang Y, Han W, Long X, Nie H (2016) Catal Commun 82:20. https://doi.org/10.1016/j.catcom.2016.04.012

    Article  CAS  Google Scholar 

  21. Rinaldi N, Kubota T, Okamoto Y (2009) Ind Eng Chem Res 48:10414–10424. https://doi.org/10.1021/ie9008343

    Article  CAS  Google Scholar 

  22. Castillo-Villalon P, Ramirez J, Vargas-Luciano JA (2014) J Catal 320:127–136. https://doi.org/10.1016/j.jcat.2014.09.021

    Article  CAS  Google Scholar 

  23. Escobar J, Barrera MC, Gutiérrez AW, Terrazas JE (2017) Fuel Process Technol 156:33–42. https://doi.org/10.1016/j.fuproc.2016.09.028

    Article  CAS  Google Scholar 

  24. Fujikawa T (2006) Catal Surv Asia 10:89–97. https://doi.org/10.1007/s10563-006-9006-9

    Article  CAS  Google Scholar 

  25. van Haandel L, Bremmer GM, Hensen EJM, Weber T (2017) J Catal 351:95–106. https://doi.org/10.1016/j.jcat.2017.04.012

    Article  Google Scholar 

  26. Nikulshin PA, Ishutenko DI, Mozhaev AA et al (2014) J Catal 312:152–169. https://doi.org/10.1016/j.jcat.2014.01.014

    Article  CAS  Google Scholar 

  27. Budukva SV, Klimov OV, Litvak GS, Chesalov YuA, Prosvirin IP, Larina TV, Noskov AS (2011) Russ J Appl Chem 84:95–102. https://doi.org/10.1134/S1070427211010162

    Article  CAS  Google Scholar 

  28. Pashigreva AV, Klimov OV, Bukhtiyarova GA et al (2010) Catal Today 150:164–170. https://doi.org/10.1016/j.cattod.2009.08.021

    Article  CAS  Google Scholar 

  29. Klimov OV, Pashigreva AV, Fedotov MA et al (2010) J Mol Catal A 322:80–89. https://doi.org/10.1016/j.molcata.2010.02.020

    Article  CAS  Google Scholar 

  30. Mazoyer P, Geantet C, Diehl F et al (2008) Catal Today 130:75–79. https://doi.org/10.1016/j.cattod.2007.07.013

    Article  CAS  Google Scholar 

  31. Escobar J, Barrera MC, Reyes JADL. et al (2008) Catal Today 133–135:282–291. https://doi.org/10.1016/j.cattod.2007.12.051

    Article  Google Scholar 

  32. Zhang RH, Zhou XW, Guo YC et al (2013) Inorg Chim Acta 406:27–36. https://doi.org/10.1016/j.ica.2013.06.032

    Article  CAS  Google Scholar 

  33. Chen J, Mi J, Li K et al (2017) Ind Eng Chem Res 56:14172–14181. https://doi.org/10.1021/acs.iecr.7b02877

    Article  CAS  Google Scholar 

  34. Mestl G, Srinivasan TKK (1998) Catal Rev Sci Eng 40:451–570. https://doi.org/10.1080/01614949808007114

    Article  CAS  Google Scholar 

  35. Bergwerff JA, Visser T, Leliveld BRG et al (2004) J Am Chem Soc 126:14548–14556. https://doi.org/10.1021/ja040107c

    Article  CAS  Google Scholar 

  36. Bergwerff JA, Jansen M, Leliveld BRG et al (2006) J Catal 243:292–302. https://doi.org/10.1016/j.jcat.2006.07.022

    Article  CAS  Google Scholar 

  37. Radhakrishnan R, Reed C, Oyama ST et al (2001) J Phys Chem B 105:8519–8530. https://doi.org/10.1021/jp0117361

    Article  CAS  Google Scholar 

  38. Li Z, Fu Y, Bao J et al (2001) Appl Catal A 220:21–30. https://doi.org/10.1016/S0926-860X(01)00646-9

    Article  CAS  Google Scholar 

  39. Gutiérrez OY, Klimova T (2011) J Catal 281:50–62. https://doi.org/10.1016/j.jcat.2011.04.001

    Article  Google Scholar 

  40. Liu Z, Chen Y (1998) J Catal 177:314–324. https://doi.org/10.1006/jcat.1998.2123

    Article  CAS  Google Scholar 

  41. Bergwerff JA, Lysova AA, Espinosa-Alonso L et al (2008) Chem A 14:2363–2374. https://doi.org/10.1002/chem.200700990

    CAS  Google Scholar 

  42. Ataloglou T, Fountzoula C, Bourikas K et al (2005) Appl Catal A 288:1–9. https://doi.org/10.1016/j.apcata.2004.11.022

    Article  CAS  Google Scholar 

  43. Davantès A, Schlaup C, Carrier X et al (2017) J Phys Chem C 121:21461–21471. https://doi.org/10.1021/acs.jpcc.7b06559

    Article  Google Scholar 

  44. van de Water LGA, Bezemer GL, Bergwerff JA et al (2006) J Catal 242:287–298. https://doi.org/10.1016/j.jcat.2006.06.004

    Article  Google Scholar 

  45. Ataloglou T, Bourikas K, Vakros J et al (2005) J Phys Chem B 109:4599–4607. https://doi.org/10.1021/jp047890f

    Article  CAS  Google Scholar 

  46. Tian H, Roberts CA, Wachs IE (2010) J Phys Chem C 114:14110–14120. https://doi.org/10.1021/jp103269w

    Article  CAS  Google Scholar 

  47. Weber RS (1995) J Catal 151:470–474. https://doi.org/10.1006/jcat.1995.1052

    Article  CAS  Google Scholar 

  48. Van Haandel L, Bremmer GM, Hensen EJM, Weber Th (2017) J Catal 351:95–106. https://doi.org/10.1016/j.jcat.2017.04.012

    Article  Google Scholar 

  49. Eijsbouts S, Van Den Oetelaar LCA, Van Puijenbroek RR (2005) J Catal 229:352–364. https://doi.org/10.1016/j.jcat.2004.11.011

    Article  CAS  Google Scholar 

  50. Okamoto Y, Hioka K, Arakawa K et al (2009) J Catal 268:49–59. https://doi.org/10.1016/j.jcat.2009.08.017

    Article  CAS  Google Scholar 

  51. Topsøe H, Clausen BS, Candia R et al (1981) J Catal 68:433–452. https://doi.org/10.1016/0021-9517(81)90114-7

    Article  Google Scholar 

  52. Venezia AM (2003) Catal Today 77:359–370. https://doi.org/10.1016/S0920-5861(02)00380-2

    Article  CAS  Google Scholar 

  53. Dupin JC, Gonbeau D, Martin-Litas I et al (2001) Appl Surf Sci 173:140–150. https://doi.org/10.1016/S0169-4332(00)00893-X

    Article  CAS  Google Scholar 

  54. Fujikawa T, Kimura H, Kiriyama K, Hagiwara K (2006) Catal Today 111:188–193. https://doi.org/10.1016/j.cattod.2005.10.024

    Article  CAS  Google Scholar 

  55. Gandubert AD, Krebs E, Legens C et al (2008) Catal Today 130:149–159. https://doi.org/10.1016/j.cattod.2007.06.041

    Article  CAS  Google Scholar 

  56. Ninh TKT, Massin L, Laurenti D, Vrinat M (2011) Appl Catal A 407:29–39. https://doi.org/10.1016/j.apcata.2011.08.019

    Article  CAS  Google Scholar 

  57. Escobar J, Gutierrez AW, Barrera MC, Colın JA (2016) Can J Chem Eng 94:66–74. https://doi.org/10.1002/cjce.22334

    Article  CAS  Google Scholar 

  58. Ge H, Wen X-D, Ramos MA et al (2014) ACS Catal 4:2556–2565. https://doi.org/10.1021/cs500477x

    Article  CAS  Google Scholar 

  59. Kaluza L, Gulkova D, Vit Z, Zdrazˇil M (2007) Appl Catal A 324:30–35. https://doi.org/10.1016/j.apcata.2007.02.050

    Article  CAS  Google Scholar 

  60. Kaluza L, Gulkova D, Solcova O, Zilkova N, Cejka J (2008) Appl Catal A 351:93–101. https://doi.org/10.1016/j.apcata.2008.09.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was conducted within the framework of the budget project АААА-А17-117041710077-4 for Boreskov Institute of Catalysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey V. Budukva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budukva, S.V., Klimov, O.V., Chesalov, Y.A. et al. Reactivation of CoMo/Al2O3 Hydrotreating Catalysts by Citric Acid. Catal Lett 148, 1525–1534 (2018). https://doi.org/10.1007/s10562-018-2365-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2365-9

Keywords

Navigation