Skip to main content
Log in

Kinetics at the nanoscale: formation and aqueous oxidation of copper nanoparticles

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A simple method to prepare copper nanoparticles under the ambient atmosphere, in an aqueous environment, is developed utilizing solid sodium borohydride as the reducing agent and sodium citrate as a stabilizer and complexing agent. This constitutes a model system having a stability of several hours, sufficient to allow kinetic measurements. The localized surface plasmon resonance band of copper nanoparticles in the UV–Vis spectrum is used to determine the rate of formation of copper nanoparticles and assess the beginning of the oxidation process. The effect of temperature, copper sulfate and sodium borohydride concentrations on the copper nanoparticle formation rate is investigated. It is found that the kinetic data obey a first order rate law with respect to both sodium borohydride and copper sulfate. Based on the kinetic data, a novel mechanism of the reduction reaction is envisaged, involving three possible pathways. As solid sodium borohydride is an important hydrogen storage material, the results of this work are relevant to the field of portable fuel cells. The optical properties of copper nanoparticles have been simulated by using the Discrete Dipole Approximation method and the Mie theory and a good agreement was found between the theoretical and experimental characteristics of the copper plasmon band. The data obtained in this work provide valuable information on the kinetics of reactions at the nanoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Macalek B, Krajczyk L, Morawska-Kowal T (2007) Colloidal copper in soda-lime silicate glasses characterized by optical and structural methods. Phys Status Solidi (c) 4:761–764

    Article  Google Scholar 

  2. Acharya V, Prabha CR, Narayanamurthy C (2004) Synthesis of metal incorporated low molecular weight polyurethanes from novel aromatic diols, their characterization and bactericidal properties. Biomaterials 25:4555–4562

    Article  CAS  Google Scholar 

  3. Cioffi N, Ditaranto N, Torsi L, Picca RA, De Giglio E, Sabbatini L, Novello L, Tantillo G, Bleve-Zacheo T, Zambonin PG (2005) Synthesis, analytical characterization and bioactivity of Ag and Cu nanoparticles embedded in poly-vinyl-methyl-ketone films. Anal Bioanal Chem 382:1912–1918

    Article  CAS  Google Scholar 

  4. Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt. Nanocryst Superlattices Sci 278:1989–1992

    Google Scholar 

  5. Kapoor S, Palit DK, Mukherjee T (2002) Preparation, characterization and surface modification of Cu metal nanoparticles. Chem Phys Lett 355:383–387

    Article  CAS  Google Scholar 

  6. Wang J, Huang H, Kesapragada SV, Gall D (2005) Growth of Y-shaped nanorods through physical vapor deposition. Nano Lett 5:2505–2508

    Article  CAS  Google Scholar 

  7. Vijaya Kumar R, Mastai Y, Diamanta Y, Gedanken A (2001) Sonochemical synthesis of amorphous Cu and nanocrystalline Cu2O embedded in a polyaniline matrix. J Mater Chem 11:1209–1213

    Article  Google Scholar 

  8. Wu S, Chen D (2004) Synthesis of high concentration Cu nanoparticles in aqueous CTAB solutions. J Colloid Interface Sci 273:165–169

    Article  CAS  Google Scholar 

  9. Huang H, Yan F, Kek Y, Chew C, Xu G, Ji W, Oh P, Tang S (1997) Synthesis, characterization, and nonlinear optical properties of copper nanoparticles. Langmuir 13:172–175

    Article  CAS  Google Scholar 

  10. Wang Y, Asefa T (2010) Poly(allylamine)-stabilized colloidal copper nanoparticles: synthesis, morphology, and their surface-enhanced Raman scattering properties. Langmuir 26:7469–7474

    Article  CAS  Google Scholar 

  11. Engels V, Benaskar F, Jefferson DA, Johnson BFG, Wheatley AEH (2010) Nanoparticulate copper routes towards oxidative stability. Dalton Trans 39:6496–6502

    CAS  Google Scholar 

  12. Mott D, Galkowski J, Wang L, Luo J, Zhong C-J (2007) Synthesis of size-controlled and shaped copper nanoparticles. Langmuir 23:5740–5745

    Article  CAS  Google Scholar 

  13. Wang Y, Biradar AV, Wang G, Sharma KK, Duncan CT, Rangan S, Asefa T (2010) Controlled synthesis of water-dispersible faceted crystalline copper nanoparticles and their catalytic properties. Chem Eur 16:10735–10743

    Article  CAS  Google Scholar 

  14. Khanna PK, Gaikwad S, Adhyapak PV, Singh N, Marimuthu R (2007) Synthesis and characterization of copper nanoparticles. Mater L 61:4711–4714

    Article  CAS  Google Scholar 

  15. Kim JH, Germer TA, Mulholland GW, Ehrman SH (2002) Size-monodisperse metal nanoparticles via hydrogen-free spray pyrolysis. Adv Mater 14:518–521

    Article  CAS  Google Scholar 

  16. Choi HC, Jung YM, Kim SB (2002) Xanes study of copper nanoparticles in the electrochemical reaction of Li with CuO. Intl J Nanosci 1:443

    Article  CAS  Google Scholar 

  17. Grouchko M, Kamyshny A, Ben-Ami K, Magdassi S (2009) Synthesis of copper nanoparticles catalyzed by pre-formed silver nanoparticles. J Nanopart Res 11:713–716

    Article  CAS  Google Scholar 

  18. Xia X, Xie C, Cai S, Yang Z, Yang X (2006) Corrosion characteristics of copper microparticles and copper nanoparticles in distilled water. Corrosion Sci 48:3924–3932

    Article  CAS  Google Scholar 

  19. Kanninen P, Johans C, Merta J, Kontturi K (2008) Influence of ligand structure on the stability and oxidation of copper nanoparticles. J Colloid Interface Sci 318:88–95

    Article  CAS  Google Scholar 

  20. Alsawafta M, SadAbadi H, Badilescu S, Packirisamy M, Vo-Van Truong (2011) Synthesis and protection of copper nanoparticles in aqueous solution in a microfluidic reactor. In: Proceedings of the 2nd international conference on nanotechnology: fundamentals and applications, Ottawa, 2011

  21. Cai M, Chen J, Zhu J (2004) Reduction and morphology of silver nanoparticles via liquid–liquid method. Appl Surf Sci 226:422–426

    Article  CAS  Google Scholar 

  22. Patakfalvi R, Virányi Z, Dékány I (2004) Kinetics of silver nanoparticles growth in aqueous polymer solution. Colloid Poly Sci 283:299–305

    Article  CAS  Google Scholar 

  23. Papp S, Patakfalvi R, Dékány I (2007) Formation and stabilization of noble metal nanoparticles. Croatica Chemica Acta 80:493–502

    CAS  Google Scholar 

  24. Kwon S Dong H, Lee S-Y (2010) Study of the reaction rate of gold nanotube synthesis from sacrificial silver nanorods through the galvanic replacement method. J Nanomaterials ID 819279

  25. Yu W, Xie H, Chen L, Li Y, Zhang C (2009) Synthesis and characterization of monodispersed copper colloids in polar solvents. Nanoscale Res Lett 4:465–470

    Article  CAS  Google Scholar 

  26. Dinega DP, Bawendi MG (1999) A solution-phase chemical approach to a new crystal structure of cobalt. Angew Chem Int Ed 38:1788–1791

    Article  CAS  Google Scholar 

  27. Fanning JC, Brooks BC, Hoeglund AB, Pelletier DA, Wadford JA (2000) The reduction of nitrate and nitrite ions in basic solution with sodium borohydride in the presence of copper ions (II). Inorg Chem Acta 310:115–119

    Article  CAS  Google Scholar 

  28. Jiang XC, Chen CY, Chen WM, Yu AB (2010) Role of citric acid in the formation of silver nanoplates through a synergistic reduction approach. Langmuir 26:4400–4408

    Article  CAS  Google Scholar 

  29. Field TB, McCourt JL, McBryde WAE (1974) Composition and stability of iron and copper citrate complexes in aqueous solution. Can J Chem 52:3119–3124

    Article  CAS  Google Scholar 

  30. Henglein A (1998) Colloidal silver nanoparticles: photochemical preparation and interaction with O2, CCl4, and some metal ions. Chem Mater 10:444–450

    Article  CAS  Google Scholar 

  31. Richards VN, Rath NP, Buhro WE (2010) Nucleation control of size and dispersity in aggregative nanoparticles growth. A study of coarsening kinetics of thiolate-capped gold nanocrystals. Chem Mater 22:3556–3567

    Article  CAS  Google Scholar 

  32. Lo CF, Karan K, Davis BR (2007) Kinetic studies of reaction between sodium borohydride and methanol, water, and their mixtures. Ind Eng Chem Res 46:5478–5484

    Article  CAS  Google Scholar 

  33. Yan J-M, Zhang X-B, Han S, Shioyama H, Xu Q (2009) Synthesis of longtime water/air stable Ni nanoparticles and their high catalytic activity for hydrolysis of ammonia-borane for hydrogen generation. Inorg Chem 48:7389–7393

    Article  CAS  Google Scholar 

  34. Xu Q, Chandra M (2006) Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia borane at room temperature. J Power Sources 163:364–370

    Article  CAS  Google Scholar 

  35. Glavee GN, Klabunde KJ, Sorensen CM, Hadjipanayis GC (1994) Borohydride reduction of nickel and copper ions in aqueous and non-aqueous media. Controllable chemistry leading to nanoscale metal and metal boride particles. Langmuir 10:4726–4730

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Badilescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alsawafta, M., Badilescu, S., Packirisamy, M. et al. Kinetics at the nanoscale: formation and aqueous oxidation of copper nanoparticles. Reac Kinet Mech Cat 104, 437–450 (2011). https://doi.org/10.1007/s11144-011-0352-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-011-0352-x

Keywords

Navigation