Skip to main content
Log in

Description of the Spectrum of Natural Noise in Semiconductor Diodes Based on the Modified Van Der Ziel Relation

  • Published:
Radiophysics and Quantum Electronics Aims and scope

In this work, we study the spectrum S iD of natural (thermal and shot) current noise of the p-n junction and the Schottky barrier in the case where their current-voltage characteristic has a nonideality coefficient η exceeding unity. The results obtained with the help of a special experimental setup are presented and explained using an equivalent scheme, which takes into account the presence of the series resistance of the diode base and contacts, as well as the possibility of existence of the leakage current. It is theoretically proven and experimentally confirmed that the van der Ziel relation S iD = 2q (I D + 2I s), which is used for calculating the current-noise spectrum of an “ideal” junction with η = 1, cannot be used for η > 1 (here, q is the elementary charge, I D is the current across the junction, and I s is the junction saturation current). The previously obtained results are generalized using the Gupta theorem for the thermal-noise spectrum in the nonlinear resistive systems and are confirmed experimentally. It is found that the noise-current spectrum is given by the formula S iD = (2q/η) (I D + 2I s), which is a modification of the van der Ziel relation for the case of an arbitrary value of the nonideality coefficient. The obtained formula for S iD is experimentally tested by measuring the noise spectrum of the δ-doped Schottky diode, which is in thermodynamic equilibrium with the surrounding medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Van der Ziel, Noise: Sources, Characterization, measurement, Prentice-Hall, Englewood Cliffs, N.J. (1971).

    Google Scholar 

  2. H. Nyquist, Phys. Rev., 32 , 110 (1928).

    Article  ADS  Google Scholar 

  3. A. V. Klyuev, E. I. Shmelev, and A. V. Yakimov, Vestn. Nizhny Novgorod Univ., No. 4, 53 (2009).

  4. A. V. Klyuev, E. I. Shmelev, and A. V. Yakimov, Fluct. Noise Lett., 11 , No. 2, 1250015 (2012).

    Article  Google Scholar 

  5. C. T. Sah, R. N. Noyce, and W. Shockley, Proc. IRE, 45 , No. 9, 1228 (1957).

    Article  Google Scholar 

  6. A. V. Belyakov, L. K. J. Vandamme, M. Yu. Perov, and A. V. Yakimov, Fluct. Noise Lett., 3 , No. 3, 325 (2003).

    Article  Google Scholar 

  7. A. V. Klyuev, Low-Frequency Noise in Nanodimensional Semiconductor Structures: Sources, Measurement, and Analysis Methods [in Russian], LAP LAMBERT Acad. Publ. (2011).

  8. A. V. Belyakov, A. V. Klyuev, and A. V. Yakimov, Radiophys. Quantum Electron., 51 , No. 2, 134 (2008).

    Article  ADS  Google Scholar 

  9. A. V. Klyuev and A. V. Yakimov, Physica B, 440 , 145 (2014).

    Article  ADS  Google Scholar 

  10. A. V. Klyuev, E. I. Shmelev, and A. V. Yakimov, Vestn. Nizhny Novgorod Univ., No. 5, 81 (2009).

  11. M. S. Gupta, Phys. Rev. A, 18 , No. 6, 2725 (1978).

    Article  ADS  Google Scholar 

  12. V. I. Shashkin, V. L.Vaks, V. M. Danil’tsev, et al., Radiophys. Quantum Electron., 48 , No. 6, 485 (2005).

    Article  ADS  Google Scholar 

  13. V. I. Shashkin, A. V. Murel, V. M. Daniltsev, and O. I. Khrykin, Semiconductors, 36 , No. 5, 505 (2002).

    Article  ADS  Google Scholar 

  14. A. V. Klyuev, Vestn. Moscow State Univ., Ser. 3, Fiz., Astron., No. 3, 20 (2011).

  15. A. V. Klyuev, Vestn. Moscow State Univ., Ser. 3, Fiz., Astron., No. 3, 13 (2012).

  16. A. V. Klyuev, J. Commun. Technol. Electron., 58 , No. 2, 178 (2013).

    Article  Google Scholar 

  17. A. V. Klyuev, Int. J. Modern Phys. B, 27 , No. 13, 1350049 (2013).

    Article  ADS  Google Scholar 

  18. A. V. Klyuev, Vestn. Nizhny Novgorod Univ., No. 5 (3), 197 (2011).

  19. O. V. Bolkhovskaya and A. V. Klyuev, Izv. Vyssh. Uchebn. Zaved. Ros., Radioelektron., No. 1, 48 (2013).

  20. M. Tripple, G. Bosman, and A. Van der Ziel, IEEE Trans. Microwave Theory Tech., 34 , 1183 (1986).

    Article  ADS  Google Scholar 

  21. A. A. Andronov, A. V. Belyakov, V. A. Gur’ev, and A. V. Yakimov, in: Proc. 2nd Workshop of the NATO Project SfP-973799 “Semiconductors” TALAM, Nizhny Novgorod (2002), p. 38.

  22. A. V. Yakimov, A. V. Klyuev, E. I. Shmelev, et. al., in: Proc. 20th Int. Conf. “Noise and Fluctuations (ICNF 2009),”AIP Conf. Proc. 2009, Vol. 1129, p. 225.

  23. A. V. Klyuev, A. V. Yakimov, and E. I. Shmelev, Fluct. Noise Lett., 12 , No. 1, 1350008 (2013).

    Article  Google Scholar 

  24. A. V. Klyuev, E. I. Shmelev, and A. V. Yakimov, Vestn. Nizhny Novgorod Univ., No. 5 (1), 57 (2010).

  25. A. V. Klyuev and A. V. Yakimov, Vestn. Nizhny Novgorod Univ., No. 6 (1), 52 (2007).

  26. A. V. Klyuev, A. V. Yakimov, and E. I. Shmelev, in: Proc. 20th Int. Conf. “Noise and Fluctuations (ICNF 2009),”AIP Conf. Proc. 2009, Vol. 1129, p. 361.

  27. N. Su, Z. Zhang, J. N. Schulman, et al., IEEE Electron. Device Lett., 28, No. 5, 336 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Klyuev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 57, No. 12, pp. 995–1004, December 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klyuev, A.V., Shmelev, E.I. & Yakimov, A.V. Description of the Spectrum of Natural Noise in Semiconductor Diodes Based on the Modified Van Der Ziel Relation. Radiophys Quantum El 57, 891–899 (2015). https://doi.org/10.1007/s11141-015-9573-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-015-9573-6

Keywords

Navigation