Skip to main content
Log in

Current Transport and 1/f Noise Characteristics in Ferromagnetic Permalloy/n-type Ge Schottky Contacts

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The current transport mechanism in permalloy/n-type Ge Schottky diodes was studied over the temperature range from 200 to 400 K. At temperatures above 250 K, the forward current-voltage (I-V) characteristics of the diode were ideal and obeyed the thermionic emission theory. Below 250 K, however, the recombination process was found to contribute to current transport. Similarly, in reverse bias, the thermionic emission mechanism appeared to dominate current transport at temperatures above 250 K, and the carrier generation mechanism dominated the reverse current below 250 K. A temperature-driven change in the current conduction mechanism from conduction dominated by low-barrier-height patches to conduction dominated by high-barrier-height regions suggests inhomogeneity in the Schottky barrier height. The barrier height inhomogeneity led to deviations in the Richardson constant from its theoretical value at lower temperatures. The room-temperature low-frequency noise measurements taken at different forward biases for the permalloy/n-type Ge Schottky diodes showed a 1/fγ dependence with a tight variation of γ between 1.20 and 1.31. The current dependence of the noise power spectral density exhibited a 1/f noise behavior, indicating the operation of the permalloy/n-type Ge Schottky diodes in the thermionic emission mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Zutic, J. Fabian and S. D. Sarma, Rev. Mod. Phys. 76, 323 (2004).

    Article  ADS  Google Scholar 

  2. K-R. Jeon, B-C. Min, Y-H. Jo, H-S. Lee, I-J. Shin, C-Y. Park, S-Y. Park and S-C. Shin, Phys. Rev. B 84, 165315 (2011).

    Article  ADS  Google Scholar 

  3. A. Dimoulas, P. Tsipas, A. Sotiropoulos and E. K. Evangelou, Appl. Phys. Lett. 89, 252110 (2006).

    Article  ADS  Google Scholar 

  4. A. V. Thathachary, K. N. Bhat, N. Bhat and M. S. Hegde, Appl. Phys. Lett. 96, 152108 (2010).

    Article  ADS  Google Scholar 

  5. R. R. Lieten, S. Degroote, M. Kuijk and G. Borghs, Appl. Phys. Lett. 92, 022106 (2008).

    Article  ADS  Google Scholar 

  6. V. Janardhanam, H-J. Yun, J. Lee, V. R. Reddy, H. Hong, K-S. Ahn and C-J. Choi, Scripta Mater. 69, 809 (2013).

    Article  Google Scholar 

  7. E. S. Liu, J. Nah, K. M. Varahramyan and E. Tutuc, Nano Lett. 10, 3297 (2010).

    Article  ADS  Google Scholar 

  8. Y. Zhou, W. Han, L. T. Chang, F. Xiu, M. Wang, M. Oehme, I. Fischer, J. Schulze, R. Kawakami and K. Wang, Phys. Rev. B 84, 1 (2011).

    Google Scholar 

  9. H. Saito, S. Watanabe, Y. Mineno, S. Sharma, R. Jansen, S. Yuasa and K. Ando, Solid State Commun. 151, 1159 (2011).

    Article  ADS  Google Scholar 

  10. A. Jain, L. Louahadj, J. Peiro, J. C. Le Breton, C. Vergnaud, A. Barski, C. Beigne, L. Notin, A. Marty, V. Baltz, S. Auffret, E. Augendre, H. Jaffres, J. M. George and M. Jamet, Appl. Phys. Lett. 99, 162102 (2011).

    Article  ADS  Google Scholar 

  11. A. Sellai, A. Mesli, M. Petit, V. L. Thanh, D. Taylor and M. Henini, Semicond. Sci. Technol. 27, 035014 (2012).

    Article  ADS  Google Scholar 

  12. M. Petit, R. Hayakawa, Y. Wakayama, V. L. Tanh and L. Michez, J. Phys. D: Appl. Phys. 49, 355101 (2016).

    Article  Google Scholar 

  13. D. Lee, S. Raghunathan, R. J. Wilson, D. E. Nikonov, K. Saraswat and S. X. Wang, Appl. Phys. Lett. 96, 052514 (2010).

    Article  ADS  Google Scholar 

  14. M. Ziese, Spin transport in Semiconductors, in Spin Electronics, edited by M. Ziese and M. J. Thornton (Springer-Verlag, Berlin-Heidelberg, 2001), p. 396.

  15. S. Gardelis, C. G. Smith, C. H. Barnes, E. H. Linfield and D. A. Ritchie, Phys. Rev. B 60, 7764 (1999).

    Article  ADS  Google Scholar 

  16. W. Wang, Y. Liu, L. Tang, Y. Jin, T. Zhao and F. Xiu, Sci. Rep. 4, 06928 (2014).

    Article  ADS  Google Scholar 

  17. E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts, 2nd ed. (Clarendon Press, Oxford, 1988).

    Google Scholar 

  18. V. Janardhanam, I. Jyothi, K. S. Ahn and C. J. Choi, Thin Solid Films 546, 63 (2013).

    Article  ADS  Google Scholar 

  19. H-W. Hubers and H. P. Roser, J. Appl. Phys. 84, 5326 (1998).

    Article  ADS  Google Scholar 

  20. M. Higashiwaki, K. Konishi, K. Sasaki, K. Goto, K. Nomura, Q. T. Thieu, R. Togashi, H. Murakami, Y. Kumagai, B. Monemar, A. Koukitu, A. Kuramata and S. Yamakoshi, Appl. Phys. Lett. 108, 133503 (2016).

    Article  ADS  Google Scholar 

  21. D. K. Schroder, Semiconductor Material and Device Characterization, third ed. (John Wiley & Sons, Inc. Publication, New Jersey, 2006).

    Google Scholar 

  22. M. Wittmer, Phys. Rev. B 43, 4385 (1991).

    Article  ADS  Google Scholar 

  23. J. M. Arroyo, J. Appl. Phys. 120, 164508 (2016).

    Article  ADS  Google Scholar 

  24. V. Janardhanam, Y-K. Park, H-J. Yun, K-S. Ahn and C-J. Choi, IEEE Electron. Dev. Lett. 33, 949 (2012).

    Article  ADS  Google Scholar 

  25. V. Aubry and F. Meyer, J. Appl. Phys. 76, 7973 (1994).

    Article  ADS  Google Scholar 

  26. C. Lu and S. N. Mohammad, Appl. Phys. Lett. 89, 162111 (2006).

    Article  ADS  Google Scholar 

  27. Y. Zhou, D. Wang, C. Ahyi, C. C. Tin, J. Williams, M. Park, N. M. Williams, A. Hanser and E. A. Preble, J. Appl. Phys. 101, 024506 (2007).

    Article  ADS  Google Scholar 

  28. R. T. Tung, Phys. Rev. B 45, 13509 (1992).

    Article  ADS  Google Scholar 

  29. T. G. M. Kleinpenning, Solid-State Electron. 22, 121 (1979).

    Article  ADS  Google Scholar 

  30. Y. An, H. Rao, G. Bosman and A. Ural, J. Vac. Sci. Technol. B 30, 021805 (2012).

    Article  Google Scholar 

  31. E. I. Shabunina, M. E. Levinshtein, N. M. Shmidt, P. A. Ivanov and J. W. Palmour, Solid-State Electron. 96, 44 (2014).

    Article  ADS  Google Scholar 

  32. M. Y. Luo, G. Bosman, A. V. D. Ziel and L. L. Hench, IEEE Trans. Electron Devices 35, 1351 (1988).

    Article  ADS  Google Scholar 

  33. Z. Khurelbaatar, Y-H. Kil, K-H. Shim, H. Cho, M-J. Kim, S-N. Lee, J-C. Jeong, H. Hong and C-J. Choi, Superlattice Microstruc. 91, 306 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kee Young Lim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janardhanam, V., Jyothi, I., Yuk, SH. et al. Current Transport and 1/f Noise Characteristics in Ferromagnetic Permalloy/n-type Ge Schottky Contacts. J. Korean Phys. Soc. 73, 605–611 (2018). https://doi.org/10.3938/jkps.73.605

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.73.605

Keywords

Navigation