Skip to main content
Log in

Measurement-device-independent continuous variable semi-quantum key distribution protocol

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Aiming at the high cost of quantum equipment and the difficulty of preparing discrete variable quantum states, a measurement-device-independent continuous variable semi-quantum key distribution (MDI-CV-SQKD) protocol is proposed. We, respectively, give the prepared-measure model and the entanglement-based (EB) model of the MDI-CV-SQKD protocol. Based on the EB model, we analyze the secret key rate and other performance of the protocol and perform numerical simulations. Then we analyze the amount of information transmitted by the channel under different attacks. As long as the channel parameters meet certain conditions, secure communication can be carried out. Through parameter adjustment, the solution can achieve the maximum secret key rate. The protocol has the advantages of easy preparation of continuous variables quantum states, low cost of semi-quantum user equipment, and high utilization of full quantum users. It also has characteristics such as the unconditional security of the full quantum protocol, the resistance to the detector side-channel attack of the measurement-device-independent protocol, and the extension of the transmission distance. Therefore, this protocol has important practical value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data and models generated or used during the study appear in the submitted article.

References

  1. Bennett, C.H., Brassard, G.: Quantum Cryptography: Public Key Distribution and Coin Tossing. In: Proceedings of IEEE International Conference on computers, systems and signal processing, Bangalore,10–19 Dec 1984, pp. 175–179. https://doi.org/10.1016/j.tcs.2011.08.039.

  2. Kwek, L.C., Cao, L., Luo, W., et al.: Chip-based quantum key distribution. AAPPS Bull. (2021). https://doi.org/10.1007/s43673-021-00017-0

    Article  Google Scholar 

  3. Chai, G., Li, D., et al.: Blind channel estimation for continuous-variable quantum key distribution. Quant. Eng. 2(2), e37 (2020). https://doi.org/10.1002/que2.37

    Article  MathSciNet  Google Scholar 

  4. Guo, H., et al.: Toward practical quantum key distribution using telecom components. Fund. Res. 1(1), 96–98 (2020). https://doi.org/10.1016/j.fmre.2020.12.002

    Article  Google Scholar 

  5. Long, G.L., Xiao, S.L.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002). https://doi.org/10.1103/PhysRevA.65.032302

    Article  ADS  Google Scholar 

  6. Zhang, H., et al.: Realization of quantum secure direct communication over 100 km fiber with time-bin and phase quantum states. Light Sci. Appl. (2022). https://doi.org/10.1038/s41377-022-00769-w

    Article  Google Scholar 

  7. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical bob. Phys. Rev. Lett. (2007). https://doi.org/10.1103/PhysRevLett.99.140501

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu, W.-J., Chen, Z.-Y., Ji, S., Wang, H.-B., Zhang, J.: Multi-party semi-quantum key agreement with delegating quantum computation. Int. J. Theor. Phys. 56(10), 3164–3174 (2017). https://doi.org/10.1007/s10773-017-3484-6

    Article  MathSciNet  MATH  Google Scholar 

  9. Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quant. Inf. Process. 16, 295 (2017). https://doi.org/10.1007/s11128-017-1736-2

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Yan, L.-L., Zhang, S.-B., et al.: Semi-quantum key agreement and private comparison protocols using bell states. Int. J. Theor. Phys. 58(11), 3852–3862 (2019). https://doi.org/10.1007/s10773-019-04252-y

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhu, D., Wang, X., Zhu, H.: Semi-quantum-honest key agreement scheme with three-particle entangled states in cross-realm setting. Quant Inf Process (2020). https://doi.org/10.1007/s11128-020-02879-z

    Article  MathSciNet  Google Scholar 

  12. Rong, Z., Qin, D., Mateus, P., et al.: Mediated semi-quantum secure direct communication. Quant. Inf. Process. 20(2), 1–13 (2021). https://doi.org/10.1007/s11128-020-02965-2

    Article  ADS  MathSciNet  Google Scholar 

  13. Rong, Z., Qin, D., Zou, X.: Semi-Quantum secure direct communication using entanglement. Int. J. Theor. Phys. (2020). https://doi.org/10.1007/s10773-020-04447-8

    Article  MathSciNet  MATH  Google Scholar 

  14. Srikara, S., Thapliyal, K., Pathak, A.: Continuous variable direct secure quantum communication using Gaussian states. Quant. Inf. Process. 19, 4 (2022). https://doi.org/10.1007/s11128-020-02627-3

    Article  MathSciNet  Google Scholar 

  15. Xie, C., Li, L., Situ, H.: Semi-quantum secure direct communication model based on Bell states. J. Theor. Phys. (2018). https://doi.org/10.1007/s10773-018-3713-7

    Article  MATH  Google Scholar 

  16. Yan, L., Zhang, S., Chang, Y., et al.: Semi-quantum private comparison protocol with three-ppaper G-like states. Quant. Inf. Process 20, 17 (2021). https://doi.org/10.1007/s11128-020-02960-7

    Article  ADS  Google Scholar 

  17. Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semi-quantum key distribution. Phys. Rev. A. (2009). https://doi.org/10.1103/PhysRevA.79.032341

    Article  MATH  Google Scholar 

  18. Zou, X., Qiu, D., Li, L., et al.: Semiquantum-key distribution using less than four quantum states. Phys. Rev. A 79(5), 1744–1747 (2009). https://doi.org/10.1103/PhysRevA.79.052312

    Article  Google Scholar 

  19. Wang, J., Zhang, S., Zhang, Q., Tang, C.J.: Semi quantum key distribution using entangled states. Chin. Phys. Lett. (2011). https://doi.org/10.1088/0256-307X/28/10/100301

    Article  Google Scholar 

  20. Hajji, H., Baz, M, E. (2021): Qutrit-based semi-quantum key distribution protocol. Quant. Inf. Process. 10. 1007 /s11128–020–02927–8

  21. Yu, K.F., Yang, C.W., Liao, C.H., et al.: Authenticated semi-quantum key distribution protocol using Bell states. Quant. Inf. Process. 13, 1457–1465 (2014). https://doi.org/10.1007/s11128-014-0740-z

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Meslouhi, A., Hassouni, Y.: Cryptanalysis on authenticated semi-quantum key distribution protocolusing Bell states. Quant. Inf. Process. 16, 18 (2017). https://doi.org/10.1007/s11128-016-1468-8

    Article  ADS  MATH  Google Scholar 

  23. Zebboudj, S., Djoudi, H., Lalaoui, D., et al.: Authenticated semi-quantum key distribution without entanglement. Quant. Inf. Process. 19, 77 (2020). https://doi.org/10.1007/s11128-019-2573-2

    Article  ADS  MathSciNet  Google Scholar 

  24. Krawec, W.O.: Mediated semiquantum key distribution. Phys. Rev. A (2015). https://doi.org/10.1103/PhysRevA.91.032323

    Article  Google Scholar 

  25. Liu, Z.R., Hwang, T.: Mediated semiquantum key distribution without invoking quantum measurement. Ann. Phys. (2018). https://doi.org/10.1002/andp.201700206

    Article  Google Scholar 

  26. Lin, P.H., Tsai, C.W., Hwang, T.: Mediated semiquantum key distribution using single photons. Ann. Phys. (2019). https://doi.org/10.1002/andp.201800347

    Article  Google Scholar 

  27. Li, Z., Zhang, Y.-C., Feihu, X., Peng, X., Guo, H.: Continuous-variable measurement-device-independent quantum key distribution. Phys. Rev. A (2014). https://doi.org/10.1103/PhysRevA.89.052301

    Article  Google Scholar 

  28. Zhao, Y., Zhang, Y., Xu, B., Yu, S., Guo, H.: Continuous-variable measurement-device-independent quantum key distribution with virtual photon subtraction. Phys. Rev. A 97, 042328 (2018). https://doi.org/10.1103/PhysRevA.97.042328

    Article  ADS  Google Scholar 

  29. Ottaviani, C., Spedalieri, G., Braunstein, S.L., Pirandola, S.: Continuous-variable quantum cryptography with an untrusted relay: detailed secret analysis of the symmetric configuration. Phys. Rev. A 91, 022320 (2015). https://doi.org/10.1103/PhysRevA.91.022320

    Article  ADS  MathSciNet  Google Scholar 

  30. Ma, H.X., Huang, P., Bai, D.Y., Wang, T., Zeng, G.H.: Long-distance continuous-variable measurement-device-independent quantum key distribution with discrete modulation. Phys. Rev. A. (2019). https://doi.org/10.1103/PhysRevA.99.022322

    Article  Google Scholar 

  31. Wang, P, Wang, X.,Y., Li, Y., M.: Continuous-variable measurement-device-independent quantum key distribution using modulated squeezed states and optical amplifiers, Phys. Rev. A 99, 042309 (2019)

  32. Pirandola, S., Ottaviani, C., Spedalieri, G., et al.: High-rate measurement-device-independent quantum cryptography. Nat. Photon 9, 397–402 (2015). https://doi.org/10.1038/nphoton.2015.83

    Article  ADS  Google Scholar 

  33. Pirandola, S., Laurenza, R., Ottaviani, C.: Fundamental limits of repeaterless quantum communications. Nat. Commun. 8, 15043 (2017). https://doi.org/10.1038/ncomms15043

    Article  ADS  Google Scholar 

  34. Zhou, Y.-H., Tan, J., Zhang, J., Shi, W.-M., Yang, Y.-G.: Three-party quantum key agreement protocol based on continuous variable single-mode squeezed states*. Commun. Theor. Phys. 71(12), 1448 (2019). https://doi.org/10.1088/0253-6102/71/12/1448

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Zhou, Y.H., Zhang, J., Shi, W.M., Yang, Y.G., Wang, M.F.: Continuous-variable multiparty quantum key agreement based on third party. Modern Phys. Lett. B (2020). https://doi.org/10.1142/S0217984920500839

    Article  MathSciNet  Google Scholar 

  36. Wu, E.: Continuous-variable quantum state sharing. Int. J. Theor. Phys. 59, 1598–1604 (2020). https://doi.org/10.1007/s10773-020-04427-y

    Article  MathSciNet  MATH  Google Scholar 

  37. Weedbrook, C., Lance, A.M., Bowen, W.P., Symul, T., Ralph, T.C., Ping, K.L.: Quantum cryptography without switching. Phys. Rev. Lett. 93, 170504 (2004). https://doi.org/10.1103/PhysRevLett.93.170504

    Article  ADS  Google Scholar 

  38. García-Patrón, R., Cerf, N.J.: Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution. Phys. Rev. Lett. (2006). https://doi.org/10.1103/PhysRevLett.97.190503

    Article  Google Scholar 

  39. Leverrier, A., Grangier, P.: A simple proof that Gaussian attacks are optimal among collective attacks against continuous-variable quantum key distribution with a Gaussian modulation. Phys. Rev. A 81, 2112 (2010). https://doi.org/10.1103/PhysRevA.81.062314

    Article  Google Scholar 

  40. Lo, H.K., Curty, M., Bing, Q.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012). https://doi.org/10.1103/PhysRevLett.108.130503

    Article  ADS  Google Scholar 

  41. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. (2006). https://doi.org/10.1103/PhysRevA.74.054302

    Article  Google Scholar 

  42. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351, 23–25 (2006). https://doi.org/10.1016/j.physleta.2005.10.050

    Article  ADS  MATH  Google Scholar 

  43. Zhang, S., L.: Design and analysis of continuous variable quantum cryptography. M. S. Dissertation, National University of Defense Technology, Changsha (2009) (in Chinese).

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 62071015) and Beijing Municipal Science and Technology Commission (Project No. Z191100007119004).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Y-HZ,·S-FQ,·W-MS, and Y-GY. The first draft of the manuscript was written by SFQ, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shu-Fen Qin.

Ethics declarations

Conflict of interests

The authors have no relevant financial or nonfinancial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, YH., Qin, SF., Shi, WM. et al. Measurement-device-independent continuous variable semi-quantum key distribution protocol. Quantum Inf Process 21, 303 (2022). https://doi.org/10.1007/s11128-022-03626-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03626-2

Keywords

Navigation