Skip to main content
Log in

A novel quantum anonymous ranking protocol

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A novel index distribution protocol based on single-particle state is proposed in this paper. Compared with the existing index distribution scheme, this protocol is not limited by the dimension of the quantum system. Based on the proposed index distribution protocol, we also propose a new quantum anonymous ranking protocol. This protocol can complete multi-user and multi-data anonymous ranking tasks in low-dimensional quantum systems. Security analysis shows that eavesdroppers cannot secretly obtain user’s private information without being discovered. In addition, we analyze and compare the protocol of this article with the existing anonymous ranking protocols. For different practical conditions, we give the general criteria of how to choose an appropriate anonymous ranking protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd Annual IEEE Symposium on Foundations of Computer Science, pp. 160-164. Chicago (1982)

  2. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game-A completeness theorem for protocols with honest majority. In: Proceedings of the 19th Annual ACM Symposium on Theory of Computing, pp. 218–229. New York (1987)

  3. Canetti, R., Lindell, Y., Ostrovsky, R.: Universally composable two-party and multi-party secure computation. In: Proceedings of the Thiry-Fourth annual ACM symposium on Theory of computing, pp. 494–503. Quebec (2002)

  4. Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptol. 13(1), 143–202 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lindell, Y., Pinkas, B.: Secure multiparty computation for privacy-preserving data mining. J. Priv. Confid. 1(1), 59–98 (2009)

    Google Scholar 

  6. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325–328 (1997)

    Article  ADS  Google Scholar 

  7. Grover, L.K.: A fast quantum mechanical algorithm for database search. Phys. Rev. Lett. 79, 212–219 (1997)

    MATH  Google Scholar 

  8. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124-134. IEEE, SantaFe (1994)

  10. Shi, Y.P.: A brief introduction to quantum computing and quantum information (I). Math. Model. Appl. 7(2), 1–10 (2018) (in Chinese)

  11. Shi, Y.P.: A brief introduction to quantum computing and quantum information (II). Math. Model. Appl. 7(3), 1–11 (2018) (in Chinese)

  12. Xu, G.B., Jiang, D.H.: Novel methods to construct nonlocal sets of orthogonal product states in an arbitrary bipartite high-dimensional system. Quantum Inf. Process. 20, 128 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  13. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Article  ADS  Google Scholar 

  14. Deng, F.G., Long, G.L., Zhou, H.Y.: Bidirectional quantum secret sharing and secret splitting with polarized single photons. Phys. Lett. A 337, 329 (2005)

    Article  ADS  MATH  Google Scholar 

  15. Zhang, Z.J.: Multiparty quantum secret sharing of secure direct communication. Phys. Lett. A 342, 60–66 (2005)

    Article  ADS  MATH  Google Scholar 

  16. Zhang, Z.J., Li, Y., Man, Z.X.: Multiparty quantum secret sharing. Phys. Rev. A 71, 044301 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum private queries. Phys. Rev. Lett. 100, 230502 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Jakobi, M., Simon, C., Gisin, N., Bancal, G.D., Zbinden, H.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83, 022301 (2011)

    Article  ADS  Google Scholar 

  19. Olejnik, L.: Secure quantum private information retrieval using phase-encoded queries. Phys. Rev. A 84, 022313 (2011)

    Article  ADS  Google Scholar 

  20. Gao, F., Liu, B., Wen, Q.Y., Chen, H.: Flexible quantum private queries based on quantum key distribution. Opt. Express 20(16), 17414–17420 (2012)

    Article  ADS  Google Scholar 

  21. Vaccaro, J.A., Spring, J., Chefles, A.: Quantum protocols for anonymous voting and surveying. Phys. Rev. A 75(1), 012333 (2007)

    Article  ADS  Google Scholar 

  22. Bonanome, M., Buzek, V., Hillery, M., Ziman, M.: Toward protocols for quantum-ensured privacy and secure voting. Phys. Rev. A 84(2), 290–296 (2011)

    Article  Google Scholar 

  23. Li, Y., Zeng, G.: Quantum anonymous voting systems based on entangled state. Opt. Rev. 15, 219–223 (2008)

    Article  Google Scholar 

  24. Jia, H.Y., Wen, Q.Y., Song, T.T., Gao, F.: Quantum protocol for millionaire problem. Opt. Commun. 284(1), 545 (2011)

    Article  ADS  Google Scholar 

  25. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42, 055305 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Lin, S., Sun, Y., Liu, X.F., et al.: Quantum private comparison protocol with d-dimensional Bell states. Quantum Inf. Process. 12, 559–568 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Liu, W., Wang, Y.B., Jiang, Z.T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. 284(12), 2629–3182 (2011)

    Article  Google Scholar 

  28. Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11, 373–384 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Han, Y.T., Zhang, Y.H., Liang, X.Q.: Quantum sealed-Bid auction protocol based on semi-honest model. Int. J. Theor. Phys. 59, 3778–3788 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, H.N., Liang, X.Q., Jiang, D.H., et al.: Multi-party quantum key agreement with four-qubit cluster states. Quantum Inf. Process. 18, 242 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  31. Wang, S.S., Jiang, D.H., Xu, G.B., et al.: Quantum key agreement with Bell states and Cluster states under collective noise channels. Quantum Inf. Process. 18, 190 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  32. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    Article  ADS  Google Scholar 

  33. Xu, Q.S., Tan, X.Q., Huang, R., Zeng, X.D.: Parallel self-testing for device-independent verifiable blind quantum computation. Quantum Eng. 2(3), e51 (2020)

    Article  Google Scholar 

  34. Quan, J.Y., Li, Q., et al.: A simplified verifiable blind quantum computing protocol with quantum input verification. Quantum Eng. 3(1), e58 (2021)

    Article  Google Scholar 

  35. Sheng, Y.B., Zhou, L.: Distributed secure quantum machine learning. Sci. Bull. 62(14), 1025–1029 (2017)

    Article  Google Scholar 

  36. Long, G.L.: Grover algorithm with zero theoretical failure rate. Phys. Rev. A 64(2), 022307 (2001)

    Article  ADS  Google Scholar 

  37. Toyama, F.M., Wytse, V.D., Nogami, Y.: Quantum search with certainty based on modified Grover algorithms: optimum choice of parameters. Quantum Inf. Process. 12, 1897–1914 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Castagnoli, G.: Highlighting the mechanism of the quantum speedup by time-symmetric and relational quantum mechanics. Found. Phys. 46(3), 360–381 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Huang, W., Wen, Q.Y., Liu, B., Su, Q., Gao, F.: Quantum anonymous ranking. Phys. Rev. A 89, 032325 (2011)

    Article  ADS  Google Scholar 

  40. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  41. Zidan, M., Eleuch, H., Abdel-Aty, M.: Non-classical computing problems: toward novel type of quantum computing problems. Results Phys. 21, 103536 (2021)

    Article  Google Scholar 

  42. Liu, W., Wu, Q., Shen, J. et al.: An optimized quantum minimum searching algorithm with sure-success probability and its experiment simulation with Cirq. J Ambient Intell Human Comput (2021)

  43. Shumovsky, A.S., Rupasov, V.I.: Quantum communication and information technologies. ISBN 978-94-010-0171-7 (2003)

  44. Long, G.L., Deng, F.G., Wang, C., et al.: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2(3), 251–272 (2007)

    Article  ADS  Google Scholar 

  45. Shimizu, K., Imoto, N.: Communication channels secured from eavesdropping via transmission of photonic Bell states. Phys. Rev. A 60(1), 157–166 (1999)

    Article  ADS  Google Scholar 

  46. Beige, A., Englert, B.G., Kurtsiefer, C., Weinfurter, H.: Secure communication with singlephoton two-qubit states. J. Phys. A Math. Gen. 35(28), L407–L413 (2002)

    Article  MATH  Google Scholar 

  47. Bostrom, K., T, Felbinger: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902-1–4 (2002)

    Article  ADS  Google Scholar 

  48. Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94(14), 140501/1–14050/14 (2005)

    Article  ADS  Google Scholar 

  49. Zidan, M.: A novel quantum computing model based on entanglement degree. Mod. Phys. Lett. B 34(35), 2050401 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  50. Zidan, M., Abdel-Aty, M., et al.: A quantum algorithm based on entanglement measure for classifying Boolean multivariate function into novel hidden classes. Results Phys. 15, 102549 (2019)

    Article  Google Scholar 

  51. Abdel-Aty, A., Kadry, M., Zidan, M., et al.: A quantum classification algorithm for classification incomplete patterns based on entanglement measure. J. Intell. Fuzzy Syst. 38(3), 2809–2816 (2020)

    Article  Google Scholar 

  52. Luo, Q.B., Yang, G.W., She, K., Li, X.Y., Wang, Y.Q., Yang, F.: Quantum anonymous ranking with d-level single-particle states. Int. J. Softw. Inform. 8, 339–343 (2014)

    Google Scholar 

  53. Lin, S., Deng, F.G., Huang, F., Liu, X.F.: Quantum anonymous ranking based on the Chinese remainder theorem. Phys. Rev. A 93, 012318 (2016)

    Article  ADS  Google Scholar 

  54. Wang, Q.L., Li, Y.C., Yu, C.H., He, H., Zhang, K.J.: Quantum anonymous ranking and selection with verifiability. Quantum Inf. Process. 19, 166 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  55. Andersson, A., Nilsson, S., Ranman, R.: Sorting in linear time? In: Proceedings of the 27th Annual ACM Symposium on the Theory of Computing, pp. 427–436 (1995)

  56. Andersson, A., Nilsson, S.: A new effcient radix sort. In: Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science, pp. 714–721. Washington (1994)

  57. Yu, C.H., Guo, G.D., Lin, S.: Quantum private comparison without entanglement. J. Chin. Comput. Syst. 35, 5 (2014)

    Google Scholar 

  58. Wang, Q.L., Yu, C.H., et al.: Self-tallying quantum anonymous voting. Phys. Rev. A 94, 022333 (2016)

    Article  ADS  Google Scholar 

  59. Tetsuhisa, O.: A preliminary study of MSD-first radix-sorting methed. Bull. Aichi Inst. Technol. Part B 19, 165–174 (1984)

    Google Scholar 

  60. Huang, W., Wen, Q.Y., Liu, B., Gao, F., Sun, Y.: Robust and efficient quantum private comparison of equality with collective detection over collective-noise channels. Sci. China Phys. Mech. 056, 009 (2013)

    Article  Google Scholar 

  61. Wang, B.C., Lei, H., Hu, Y.P.: D-NTRU: more efficient and average-case IND-CPA secure NTRU variant. Inf. Sci. Int. J. 438, 15–31 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11974373 and 62171264) and Shandong Provincial Natural Science Foundation (Grant No. ZR2019MF023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Qian Liang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YR., Jiang, DH. & Liang, XQ. A novel quantum anonymous ranking protocol. Quantum Inf Process 20, 342 (2021). https://doi.org/10.1007/s11128-021-03288-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03288-6

Keywords

Navigation