Skip to main content
Log in

Herring–Flicker coupling and thermal quantum correlations in bipartite system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we study thermal quantum correlations as quantum discord and entanglement in bipartite system imposed by external magnetic field with Herring–Flicker coupling, i.e., \(J(R)=1.642 e^{-2 R} R^{5/2}+O(R^{2}e^{-2R})\). The Herring–Flicker coupling strength is the function of R, which is the distance between spins and systems carry XXX Heisenberg interaction. By tuning the coupling distance R, temperature and magnetic field quantum correlations can be scaled in the bipartite system. We find the long sustainable behavior of quantum discord in comparison with entanglement over the coupling distance R. We also investigate the situations, where entanglement totally dies but quantum discord exists in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Bose, S., Bayat, A., Sodano, P., Banchi, L., Verrucchi, P.: Spin Chains as Data Buses, Logic Buses and Entanglers, Chapter: Quantum State Transfer and Network Engineering, pp. 1–37 (2013)

    Google Scholar 

  4. D’Amico, I.: Quantum dot-based quantum buses for quantum computer hardware architecture. Microelectron. J. 37, 1440 (2006)

    Article  Google Scholar 

  5. Schirmer, S.G., Pemberton-Ross, P.J.: Fast high fidelity information transmission through spin chain quantum wires. Phys. Rev. A 80, 030301 (2009)

    Article  ADS  Google Scholar 

  6. Haldane, F.D.M.: Exact Jastrow–Gutzwiller resonating-valence-bond ground state of the spin 1/2 antiferromagnetic Heisenberg chain with \(\frac{1}{r^{2}}\) exchange. Phys. Rev. Lett. 60, 635 (1988)

    Article  ADS  Google Scholar 

  7. Shastry, B.S.: Exact solution of an S=\(\frac{1}{2}\) Heisenberg antiferromagnetic chain with long-ranged interactions. Phys. Rev. Lett. 60, 639 (1988)

    Article  ADS  Google Scholar 

  8. Lin, B., Wang, Y.S.: Quantum correlations in a long range interaction spin chain. Phys. B 407, 77 (2012)

    Article  ADS  Google Scholar 

  9. XiaoSan, M., Ying, Q., GuangXing, Z., AnMin, W.: Quantum discord of thermal states of a spin chain with Calogero–Moser type interaction. Sci. China 56, 600 (2013)

    Google Scholar 

  10. Bravo, B., Cabra, D.C., Gmez Albarracn, F.A., Rossini, G.L.: Long-range interactions in antiferromagnetic quantum spin chains. Phys. Rev. B 96, 054441 (2017)

    Article  ADS  Google Scholar 

  11. Homrighausen, I., Abeling, N.O., Zauner-Stauber, V., Halimeh, J.C.: Anomalous dynamical phase in quantum spin chains with long-range interactions. Phys. Rev. B 96, 104436 (2017)

    Article  ADS  Google Scholar 

  12. Neyenhuis, B., Zhang, J., Hess, P.W., Smith, J., Lee, A.C., Richerme, P., Gong, Z.X., Gorshkov, A.: Observation of prethermalization in long-range interacting spin chains. Sci. Adv. 3(8), e1700672 (2017)

    Article  ADS  Google Scholar 

  13. Hunga, C.L., Gonzlez-Tudelac, A., Ignacio, C.J., Kimble, H.J.: Quantum spin dynamics with pairwise-tunable long-range interactions. PNAS 113, 34 (2016)

    Article  MathSciNet  Google Scholar 

  14. Herring, C., Flicker, M.: Asymptotic exchange coupling of two hydrogen atoms. Phys. Rev. 134, A362 (1964)

    Article  ADS  Google Scholar 

  15. Huang, Z., Kais, S.: Entanglement as measure of electron–electron correlation in quantum chemistry calculations. Chem. Phys. Lett. 413, 1 (2005)

    Article  ADS  Google Scholar 

  16. Kane, B.E.: A silicon-based nuclear spin quantum computer. Nature 393, 133 (1998)

    Article  ADS  Google Scholar 

  17. Kamenev, D.I., Berman, G.P., Tsifrinovich, V.I.: Influence of qubit displacements on quantum logic operations in a silicon-based quantum computer with constant interaction. Phys. Rev. A 74, 042337 (2006)

    Article  ADS  Google Scholar 

  18. Zurek, W.H.: Einselection and decoherence from an information theory perspective. Annalen der Physik 9, 855 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  19. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  20. Bera, A., Das, T., Sadhukhan, D., Singha Roy, S., Sen, De A., Sen, U.: Quantum Discord and Its Allies: A Review. arXiv:1703.10542v1

  21. Nielsen, M.A.: Quantum information theory. Ph.D. thesis, University of Mexico, arXiv:quant-ph/0011036 (1998)

  22. Arnesen, M.C., Bose, S., Vedral, V.: Natural thermal and magnetic entanglement in the 1D Heisenberg model. arXiv:quant-ph/0009060 (2000)

  23. Maziero, J., Guzman, H.C., Cleri, L.C., Sarandy, M.S., Serra, R.M.: Quantum and classical thermal correlations in the XY spin-\(\frac{1}{2}\) chain. Phy. Rev. A. 82, 012106 (2010)

    Article  ADS  Google Scholar 

  24. Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  25. Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 30, 598 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  26. Sharma, K.K., Awasthi, S.K., Pandey, S.N.: Entanglement sudden death and birth in qubit–qutrit systems under Dzyaloshinskii–Moriya interaction. Quantum Inf. Process. 12, 3437 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  27. Sharma, K.K., Pandey, S.N.: Entanglement dynamics in two parameter qubit–qutrit states under Dzyaloshinskii–Moriya interaction. Quantum Inf. Process. 13, 2017 (2014)

    Article  ADS  Google Scholar 

  28. Sharma, K.K., Pandey, S.N.: Influence of Dzyaloshinshkii–Moriya interaction on quantum correlations in two qubit Werner states and MEMS. Quantum Inf. Process. 14, 1361 (2015)

    Article  ADS  Google Scholar 

  29. Sharma, K.K., Pandey, S.N.: Dzyaloshinshkii–Moriya interaction as an agent to free the bound entangled states. Quantum Inf. Process. 15, 1539 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  30. Sharma, K.K., Pandey, S.N.: Dynamics of entanglement in two parameter qubit–qutrit states with x-component of DM interaction. Commun. Theor. Phys. 65, 278 (2016)

    Article  ADS  Google Scholar 

  31. Sharma, K.K., Pandey, S.N.: Robustness of W and Greenberger Horne Zeilinger states against Dzyaloshinskii–Moriya interaction Quant. Inf. Proc. 15, 4995 (2016)

    Article  Google Scholar 

  32. Luo, S., Fu, S.: Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011)

    Article  ADS  Google Scholar 

  33. Cavalcanti, D., Skrzypczyk, P.: Quantum steering: a review with focus on semidefinite programming. Rep. Prog. Phys. 80, 024001 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  34. Sainz, A.B., Aolita, L., Piani, M., Hoban, M.J., Skrzypczyk, P.: A formalism for steering with local quantum measurements, arXiv:1708.00756 (2017)

  35. Arnesen, M.C., Bose, S., Vedral, V.: Natural thermal and magnetic entanglement in 1D Heisenberg model. Phys. Rev. Lett. 87, 017901 (2001)

    Article  ADS  Google Scholar 

  36. Plenio, M.B., Virmani, S.: An introduction to entanglement measures. Quant. Inf. Comp. 7, 1 (2007)

    MathSciNet  MATH  Google Scholar 

  37. Wang, C.Z., Li, C.X., Nie, L.Y., Li, J.F.: Classical correlation and quantum discord mediated by cavity in two coupled qubits. J. Phys. B At. Mol. Opt. 44, 015503 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Ministry of Electronics & Information Technology, Government of India, through the Centre of Excellence in Nano-Electronics, IIT Bombay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kapil K. Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, K.K. Herring–Flicker coupling and thermal quantum correlations in bipartite system. Quantum Inf Process 17, 321 (2018). https://doi.org/10.1007/s11128-018-2089-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2089-1

Keywords

Navigation