Skip to main content
Log in

Influence of Dzyaloshinshkii–Moriya interaction on quantum correlations in two-qubit Werner states and MEMS

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we study the influence of Dzyaloshinskii–Moriya (DM) interaction on quantum correlations in two-qubit Werner states and maximally entangled mixed states (MEMS). We consider our system as a closed system of a qubit pair and one auxiliary qubit, which interact with any one of the qubit of the pair through DM interaction. We show that DM interaction, taken along any direction (x or y or z), does not affect two-qubit Werner states. On the other hand, the MEMS are affected by x and z components of DM interaction and remain unaffected by the y component. Further, we find that the state (i.e., probability amplitude) of auxiliary qubit does not affect the quantum correlations in both the states, and only DM interaction strength influences the quantum correlations. So one can avoid the intention to prepare the specific state of auxiliary qubit to manipulate the quantum correlations in both the states. We mention here that avoiding the preparation of state can contribute to cost reduction in quantum information processing. We also observe the phenomenon of entanglement sudden death in the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  4. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Meyer, D.: Quantum strategies. Phys. Rev. Lett. 82, 1052 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Lugiato, L.: Quantum Imaging. J. Opt. B Quantum Semiclass. 4, 3 (2002)

    Article  Google Scholar 

  8. Bennett, C., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  10. Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 30, 598 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  11. Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)

    Article  ADS  Google Scholar 

  12. Munro, W.J., James, D.F.V., White, A.G., Kwiat, P.G.: Maximizing the entanglement of two mixed qubits. Phys. Rev. A 64, 030302 (2001)

    Article  ADS  Google Scholar 

  13. Peters, N.A., Altepeter, J.B., Branning, D., Jeffrey, E.R., Wei, T., Kwiat, P.G.: Maximally entangled mixed states: creation and concentration. Phys. Rev. Lett. 92, 133601 (2004)

    Article  ADS  Google Scholar 

  14. Dzyaloshinsky, I.: A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241 (1958)

    Article  ADS  Google Scholar 

  15. Moriya, T.: New mechanism of anisotropic superexchange interaction. Phys. Rev. Lett. 4, 228 (1960)

    Article  ADS  Google Scholar 

  16. Moriya, T.: Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. Lett. 120, 91 (1960)

    ADS  Google Scholar 

  17. Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A. 77, 042303 (2008)

    Article  ADS  Google Scholar 

  18. Bloch, I., Dalibard, J., Zwerger, W.: Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  19. Lewenstein, M., Sanpera, A., Ahufinger, V., Damski, B., Sen, A., Sen, U.: Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond. Adv. Phys. 56, 243 (2007)

    Article  ADS  Google Scholar 

  20. Qiang, Z., Xiao-Ping, Z., Qi-Jun, Z., Zhong-Zhou, R.: Entanglement dynamics of a Heisenberg chain with Dzyaloshinskii–Moriya interaction. Chin. Phys. B 18, 3210 (2009)

    Article  ADS  Google Scholar 

  21. Qiang, Z., Ping, S., Xiao-Ping, Z., Zhong-Zhou, R.: Control of entanglement sudden death induced by Dzyaloshinskii–Moriya interaction. Chin. Phys. C 34, 1583 (2010)

    Article  ADS  Google Scholar 

  22. Qiang, Z., Qi-Jun, Z., Xiao-Ping, Z., Zhong-Zhou, R.: Controllable entanglement sudden birth of Heisenberg spins. Chin. Phys. C 35, 135 (2011)

    Article  ADS  Google Scholar 

  23. Sharma, K.K., Awasthi, S.K., Pandey, S.N.: Entanglement sudden death and birth in qubit–qutrit systems under Dzyaloshinskii–Moriya interaction. Quantum Inf. Process. 12, 3437 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Sharma, K.K., Pandey, S.N.: Entanglement dynamics in two parameter qubit–qutrit states under Dzyaloshinskii–Moriya interaction. Quantum Inf. Process. 13, 2017 (2014)

    Article  ADS  MATH  Google Scholar 

  25. Metwally, N.: Entangled network and quantum communication. Phys. Lett. A. 375, 4268 (2011)

    Article  ADS  MATH  Google Scholar 

  26. Aty, A., Zakaria, N., Cheong, L., Metwally, N.: Effect of spin orbit interaction (Heisenberg XYZ model) on partial entangled quantum network. J. Quantum Inf. Sci. 4, 1 (2014)

    Article  Google Scholar 

  27. Abdel-Aty, Abdel-Haleem., Zakaria, Nordin., Mabrok, M.A.: Dynamics of the entanglement over noisy quantum networks. IEEE conference DOI:10.1109/ICCOINS.2014.6868409

  28. Wang, C.Z., Li, C.X., Nie, L.Y., Li, J.F.: Classical correlation and quantum discord mediated by cavity in two coupled qubits. J. Phys. B At. Mol. Opt. 44, 015503 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Pandey.

Appendices

Appendix 1: Quantum discord

To make this paper self-contained, we briefly discuss quantum discord here [17]. It is known that a bipartite quantum state can carry classical and non-classical correlations. A theoretic measure of information is the mutual information in information theory. The mutual information stored in two classical distributions, equipped with two random variables \(X\) and \(Y\), assuming values \(\{x_{i}\}\) and \(\{y_{i}\}\) with probabilities \(\{p_{i}\}\) and \(\{p_{j}\}\), is defined as

$$\begin{aligned} I(X:Y)=H(X)+H(Y)-H(X,Y), \end{aligned}$$
(23)

or

$$\begin{aligned} I(X:Y)=H(X)-H(X|Y), \end{aligned}$$
(24)

where \(H(X)=-\Sigma _{i}p_{i}\mathrm{log}_{2}p_{i}\) and \(H(Y)=-\Sigma _{i}q_{i}\mathrm{log}_{2}q_{i}\) are the Shannon entropies associated with random variables \(X\) and \(Y\), respectively, \(H(X,Y)\) is the joint entropy of \(X\) and \(Y\), and \(H(X|Y)\) is the conditional entropy of \(X\) and \(Y\). From classical point of view, both the above Eqs. (23) and (24) are equivalent, but in quantum mechanical scenario both the expressions are different. Let us consider a bipartite quantum system equipped with parties A and B described by a composite density matrix \(\rho ^{AB}\) with marginal density matrices \(\rho ^{A}\) and \(\rho ^{B}\). The quantum analogues of mutual information of Eqs. (23) and (24) is obtained by replacing the Shannon entropies by von Neumann entropies as

$$\begin{aligned} I(\rho ^{AB})=S(\rho ^{A})+S(\rho ^{B})-S(\rho ^{AB}) \end{aligned}$$
(25)

and

$$\begin{aligned} I(\rho ^{AB})=S(\rho ^{A})-S(\rho ^{A}|\rho ^{B}), \end{aligned}$$
(26)

where \(S(\rho ^{A})=-Tr(\rho ^{A}\mathrm{log}_{2}\rho ^{A})\) and \(S(\rho ^{B})=-Tr(\rho ^{B}\mathrm{log}_{2}\rho ^{B})\) are the von Neumann entropies of the subsystem A and B, respectively, and \(S(\rho ^{AB})=Tr(\rho ^{AB})\mathrm{log}_{2}\rho ^{AB}\) is the joint von Neumann entropy of the composite quantum system AB. The quantity given by Eq.(26) is obscure, because the conditional entropy \(S(\rho ^{A}|\rho ^{B})\) depends upon measurement performed on either one of the party A or B. So both the Eqs. (25) and (26) are not equivalent from quantum mechanical point of view. The von Neumann projective measurement performed on system A projects the system into a statistical ensemble \(\{\rho ^{B},p_{k}^{A}\}\), such that

$$\begin{aligned} \rho ^{AB}\longmapsto \rho _{k}^{B}=\frac{(A_{k}\otimes I_{B})\rho ^{AB}(A_{k}\otimes I_{B})}{p_{k}}, \end{aligned}$$
(27)

where

$$\begin{aligned} p_{k}=Tr \left[ (A_{k}\otimes I_{B})\rho ^{AB} (A_{k} \otimes I_{B}) \right] \end{aligned}$$
(28)
$$\begin{aligned} A_{k}=UM_{k}U^{\dagger }, \nonumber \\ M_{k}=|k\rangle \langle k|, k=0,1 \end{aligned}$$
(29)

It is known that any unitary can be written up to a constant phase as

$$\begin{aligned} U=tI+y.\sigma , \end{aligned}$$
(30)

with \(t\in R, \, y=(y_{1},y_{2},y_{3})\in R^{3}, \, \sigma \) is the Pauli vector of qubit and

$$\begin{aligned} t^{2}+y_{1}^2+y_{2}^2+y_{3}^2=1. \end{aligned}$$

Now Eq. (26) becomes, with respect to the projective measurement \(A_{k}\), as

$$\begin{aligned} I (\rho ^{AB}|A_{k}):=S(\rho ^{B})-S(\rho ^{AB}|A_{k}), \end{aligned}$$
(31)

where \(S(\rho ^{AB}|A_{k}):=\Sigma p_{k}S(\rho _{k}^{B})\) is the conditional quantum entropy based on the measurement \(A_{k}\). Classical correlations is defined as the maximization of \(I(\rho ^{Ab}|A_{k})\) over all possible measurements \(A_{k}\) and is given by

$$\begin{aligned} C(\rho ^{AB}):=\mathrm{sup}_{\{A_{k}\}}I(\rho ^{AB}|A_{k}). \end{aligned}$$
(32)

On simplifying, we get

$$\begin{aligned} C(\rho ^{AB}):=S(\rho ^{B})-\min _{\{A_{k}\}}S(\rho ^{B}|A_{k}). \end{aligned}$$
(33)

Quantum discord is given by the difference of mutual quantum information \(I(\rho ^{AB})\) given in Eq. (25) and classical correlations \(C(\rho ^{AB})\) given in Eq. (33). So we obtained the expression of quantum discord as

$$\begin{aligned} Q(\rho ^{AB})=I(\rho ^{AB})-C(\rho ^{AB}) =S(\rho ^{A})-S(\rho ^{AB})+\min _{\{{A_{k}}\}}S(\rho ^{B}|A_{k}). \end{aligned}$$
(34)

The calculation of quantum discord is based on complex maximization procedure and obtaining an analytic expression of \(C(\rho _{AB})\) for general states is not an easy task. Here we write our X-structured density matrix as follows

$$\begin{aligned} \rho ^{AB}= \left[ \begin{array}{cccc} \rho _{11} &{}{\quad }0 &{}{\quad }0 &{}{\quad }\rho _{14} \\ 0 &{}{\quad }\rho _{22}&{}{\quad }\rho _{23}&{}{\quad }0 \\ 0&{}{\quad }\rho _{32}&{}{\quad }\rho _{33}&{}{\quad }0 \\ \rho _{41}&{}{\quad }0&{}{\quad }0&{}{\quad }\rho _{44} \\ \end{array} \right] . \ \ \ \end{aligned}$$
(35)

Here we use the method to calculate the quantities \(Q(\rho ^{AB}), \, CC(\rho ^{AB})\) given by C. Z. Wang et al.[28], so we obtain \(Q(\rho ^{AB}), \, CC(\rho ^{AB})\) as follows

$$\begin{aligned} CC(\rho ^{AB})&= \mathrm{max}(CC_{1},CC_{2}), \end{aligned}$$
(36)
$$\begin{aligned} QD(\rho ^{AB})&= \mathrm{min}(QD_{1},QD_{2}), \end{aligned}$$
(37)

where

$$\begin{aligned} CC_{j}&= H(\rho _{11}+\rho _{22})-D_{j}, \\ QD_{j}&= H(\rho _{11}+\rho _{33})+\Sigma _{k=1}^{4}\lambda _{k}\mathrm{Log}_{2}\lambda _{k}+D_{j}, \end{aligned}$$

and

$$\begin{aligned} D_{1} = H(\tau ), D_{2}&= -\Sigma _{j=1}^{4}\rho _{jj}\mathrm{log}_{2}\rho _{jj}-H(\rho _{11}+\rho _{33}), \\ H(\rho _{11}+\rho _{22})&= -(\rho _{11}+\rho _{22})\mathrm{log}_{2}(\rho _{11}+\rho _{22}) \\&\quad -\,[1-(\rho _{11}+\rho _{22})]\mathrm{log}_{2}[1-(\rho _{11}+\rho _{22})],\\ \tau&= \frac{1+\sqrt{[1-2(\rho _{33}+\rho _{44})]^{2}+4(|\rho _{14}|+|\rho _{23}|)^{2}}}{2}, \end{aligned}$$

where \(\lambda _{k}\) are the eigenvalues of \(\rho ^{AB}\) and \(\rho _{33}, \, \rho _{44}, \, \rho _{14}\) and \(\rho _{23}\) are the elements of X-structured density matrix given in Eq. (35).

Appendix 2: Mathematica code

Under this section, we provide the mathematica code to calculate the quantum discord for X-structured density matrices. The code is given below.

\(m=\{\{\rho _{11},0,0,\rho _{14}\},\{0,\rho _{22},\rho _{23},0\},\{ 0,\rho _{32},\rho _{33},0\},\{\rho _{14},0,0,\rho _{44}\}\};\) \(e\)=Eigenvalues [m]; \(\lambda _{1}=e[[1]];\) \(\lambda _{2}=e[[2]];\) \(\lambda _{3}=e[[3]];\) \(\lambda _{4}=e[[4]];\) \(H[x_{-}]:=\) Module[\(\{ x1=x\},\) \(-x1\) Log2[\(x1\)]-\((1-x1)\) Log2[\(1-x1\)]] Log2[\(x_{-}\)]=If[\(x=0\),0,Log2[x]]; p=FullSimplify[(ComplexExpand [Abs\([m[[1]][[4]]]\)+ComplexExpand [Abs\([m[[2]][[3]]])^{2}\)]; \(\tau =(1/2)*(1+\sqrt{(}(1-2(m[[3]][[3]]+m[[4]][[4]]))^2+4(p)))\); DD1=N[H[\(\tau \)]]; a=\(-\)m[[1]][[1]]Log2[m[[1]]m[[1]]]; b=\(-\)m[[2]][[2]] Log2[m[[2]][[2]]]; c=\(-\)m[[3]][[3]] Log2 [m[[3]][[3]]]; d=\(-\)m[[4]][[4]] Log2 [m[[4]][[4]]]; f=\(-\)H[m[[1]][[1]]]+m[[3]][[3]]; DD2=a+b+c+d+f; Q11=H[m[[1]][[1]]+m[[3]][[3]]]+\(\lambda _{1}\) Log2 [\(\lambda _{1}\)]+\(\lambda _{2}\) Log2 [\(\lambda _{2}\)]+\(\lambda _{3}\) Log2 [\(\lambda _{3}\)]+\(\lambda _{4}\) Log2 [\(\lambda _{4}\)]+DD1; Q22=H[m[[1]][[1]]+m[[3]][[3]]]+\(\lambda _{1}\) Log2 [\(\lambda _{1}\)]+\(\lambda _{2}\) Log2 [\(\lambda _{2}\)]+\(\lambda _{3}\) Log2 [\(\lambda _{3}\)]+\(\lambda _{4}\) Log2 [\(\lambda _{4}\)]+DD2; QD=N[Min[Q11,Q22]]; Quit[]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, K.K., Pandey, S.N. Influence of Dzyaloshinshkii–Moriya interaction on quantum correlations in two-qubit Werner states and MEMS. Quantum Inf Process 14, 1361–1375 (2015). https://doi.org/10.1007/s11128-015-0928-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-0928-x

Keywords

Navigation