Skip to main content
Log in

Entanglement sudden death and birth in qubit–qutrit systems under Dzyaloshinskii–Moriya interaction

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study entanglement dynamics of qubit–qutrit pair under Dzyaloshinskii–Moriya (DM) interaction. The qubit–qutrit pair acts as a closed system and one external qubit serve as the environment for the pair. The external qubit interact with qubit of closed system via DM interaction. This interaction frequently kills the entanglement between qubit–qutrit pair, which is also periodically recovered. On the other hand two parameter class of state of qubit–qutrit pair also affected by DM interaction and one parameter class of state remains unaffected. The frequency of occurrence of entanglement sudden death and entanglement sudden birth in two parameter class of state is half than qubit–qutrit pure state. We used our quantification of entanglement as negativity measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  MATH  ADS  Google Scholar 

  2. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  4. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Panigrahi, P.K., Mitra, C.: Use of quantum correlation: a theoretical and experimental perspective. J. Indian Inst. Sci. 89, 333–350 (2009)

    MATH  MathSciNet  Google Scholar 

  6. Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  7. Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 30, 598–601 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  8. Ann, K., Jaeger, G.: Entanglement sudden death in qubit-qutrit systems. Phys. Lett. A 372, 579–583 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Karpat, G., Gedik, Z.: Correlation dynamics of qubit–qutrit systems in a classical dephasing environment. Phys. Lett. A 375, 4166–4171 (2011)

    Article  MATH  ADS  Google Scholar 

  10. Hai-Rui, W.: Dynamics of entanglement for a two-parameter class of states in a qubit–qutrit system. Commun. Theor. Phys. 57, 983–990 (2012)

    Article  MATH  ADS  Google Scholar 

  11. Albanese, C.: On the spectrum of the Heisenberg Hamiltonian. J. Stat. Phys. 55, 297–309 (1989)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Ising, Ernst: Beitrag zur theorie des ferromagnetismus. Z. Phys. 31, 253–258 (1925)

    Article  ADS  Google Scholar 

  13. Jaynes, E.T., Cummings, F.W.: Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89–109 (1963)

    Article  Google Scholar 

  14. Dzyaloshinsky, I.: A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958)

    Article  ADS  Google Scholar 

  15. Moriya, T.: New mechanism of anisotropic superexachange interaction. Phys. Rev. Lett. 4, 228–230 (1960)

    Article  ADS  Google Scholar 

  16. Moriya, T.: Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. Lett. 120, 91 (1960)

    ADS  Google Scholar 

  17. Affleek, I., Haldane, F.D.M.: Critical theory of quantum spin chains. Phys. Rev. B 36, 5291–5300 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  18. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  19. Plenio, M.B., Virmani, S.: An introduction to entanglement measures. Quantum. Inf. Comp. 7, 1–51 (2007)

    MATH  MathSciNet  Google Scholar 

  20. Peres, A.: Quantum Theory: Concepts and Methods. Kluwer, Dordrecht (1995)

    MATH  Google Scholar 

  21. Peres, A.: Higher order Schmidt decompositions. Phys. Lett. A 202, 16–17 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Schmidt, E.: Zur theorie der linearen und nichtlinearen Integralgleichungen. I. Teil: Entwicklung willkrlicher funktionen nach systemen vorgeschriebener. Math. Ann. 63, 433–476 (1907)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ekert, A., Knight, P.L.: Entangled quantum systems and the Schmidt decomposition. Am. J. Phys. 63, 415 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Pyo Chi, D., Lee, S.: Entanglement for a two-parameter class of states in \(2\otimes n\) quantum system. J. Phys. A: Math. Gen. 36, 11503–11510 (2003)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Pandey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, K.K., Awasthi, S.K. & Pandey, S.N. Entanglement sudden death and birth in qubit–qutrit systems under Dzyaloshinskii–Moriya interaction. Quantum Inf Process 12, 3437–3447 (2013). https://doi.org/10.1007/s11128-013-0607-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0607-8

Keywords

Navigation