Skip to main content
Log in

Effect of noise on deterministic joint remote preparation of an arbitrary two-qubit state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum communication has attracted much attention in recent years. Deterministic joint remote state preparation (DJRSP) is an important branch of quantum secure communication which could securely transmit a quantum state with 100% success probability. In this paper, we study DJRSP of an arbitrary two-qubit state in noisy environment. Taking a GHZ based DJRSP scheme of a two-qubit state as an example, we study how the scheme is influenced by all types of noise usually encountered in real-world implementations of quantum communication protocols, i.e., the bit-flip, phase-flip (phase-damping), depolarizing, and amplitude-damping noise. We demonstrate that there are four different output states in the amplitude-damping noise, while there is the same output state in each of the other three types of noise. The state-independent average fidelity is presented to measure the effect of noise, and it is shown that the depolarizing noise has the worst effect on the DJRSP scheme, while the amplitude-damping noise or the phase-flip has the slightest effect depending on the noise rate. Our results are also suitable for JRSP and RSP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers Systems and Signal Processing, pp. 175–179. IEEE, New York, Bangalore, India (1984)

  2. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  3. Terhal, B.M., DiVincenzo, D.P., Leung, D.W.: Hiding bits in Bell states. Phys. Rev. Lett. 86(25), 5807 (2001)

    Article  ADS  Google Scholar 

  4. Qu, Z.G., Chen, X.B., Zhou, X.J., Niu, X.X., Yang, Y.X.: Novel quantum steganography with large payload. Opt. Commun. 283(23), 4782 (2010)

    Article  ADS  Google Scholar 

  5. Curty, M., Santos, D.J.: Quantum authentication of classical messages. Phys. Rev. A 64(6), 062309 (2001)

    Article  ADS  Google Scholar 

  6. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  7. Xia, Z., Wang, X., Sun, X., Wang, B.: Steganalysis of least significant bit matching using multi-order differences. Secur. Commun. Netw. 7(8), 1283 (2014)

    Article  Google Scholar 

  8. Xia, Z., Wang, X., Sun, X., Liu, Q., Xiong, N.: Steganalysis of LSB matching using differences between nonadjacent pixels. Multimed. Tools Appl. 75(4), 1947 (2016)

    Article  Google Scholar 

  9. Guo, P., Wang, J., Li, B., Lee, S.: A variable threshold-value authentication architecture for wireless mesh networks. J. Internet Technol. 15(6), 929 (2014)

    Google Scholar 

  10. Ren, Y., Shen, J., Wang, J., Han, J., Lee, S.: Mutual verifiable provable data auditing in public cloud storage. J. Internet Technol. 16(2), 317 (2015)

    Google Scholar 

  11. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325 (1997)

    Article  ADS  Google Scholar 

  12. Xia, Z., Wang, X., Sun, X., Wang, Q.: A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 27(2), 340 (2016)

    Article  Google Scholar 

  13. Fu, Z., Sun, X., Liu, Q., Zhou, L., Shu, J.: Achieving efficient cloud search services: multi-keyword ranked search over encrypted cloud data supporting parallel computing. IEICE Trans. Commun. E98.B(1), 190 (2015)

    Article  ADS  Google Scholar 

  14. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62(1), 012313 (2000)

    Article  ADS  Google Scholar 

  16. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63(1), 14302 (2000)

    Article  Google Scholar 

  17. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87(7), 077902 (2001)

    Article  ADS  Google Scholar 

  18. Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B At. Mol. Opt. Phys. 40(18), 3719 (2007)

    Article  ADS  Google Scholar 

  19. Nguyen, B.A., Kim, J.: Joint remote state preparation. J. Phys. B At. Mol. Opt. Phys. 41(9), 095501 (2008)

    Article  ADS  Google Scholar 

  20. Hou, K., Wang, J., Lu, Y.L., Shi, S.H.: Joint remote preparation of a multipartite GHZ-class state. Int. J. Theor. Phys. 48(7), 2005 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Luo, M.X., Chen, X.B., Ma, S.Y., Niu, X.X., Yang, Y.X.: Joint remote preparation of an arbitrary three-qubit state. Opt. Commun. 283(23), 4796 (2010)

    Article  ADS  Google Scholar 

  22. Nguyen, B.A.: Joint remote state preparation via W and W-type states. Opt. Commun. 283(20), 4113 (2010)

    Article  Google Scholar 

  23. Xiao, X.Q., Liu, J.M., Zeng, G.H.: Joint remote state preparation of arbitrary two- and three-qubit states. J. Phys. B At. Mol. Opt. Phys. 44, 075501 (2011)

    Article  ADS  Google Scholar 

  24. Nguyen, B.A., Cao, T.B., Nung, V.D.: Deterministic joint remote state preparation. Phys. Lett. A 375(41), 3570 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chen, Q.Q., Xia, Y., Song, J.: Deterministic joint remote preparation of an arbitrary three-qubit state via EPR pairs. J. Phys. A Math. Theor. 45, 055303 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Jiang, M., Dong, D.Y.: A recursive two-phase general protocol on deterministic remote preparation of a class of multi-qubit states. J. Phys. B At. Mol. Opt. Phys. 45(20), 205506 (2012)

    Article  ADS  Google Scholar 

  27. Wang, M.M., Chen, X.B., Yang, Y.X.: Deterministic joint remote preparation of an arbitrary two-qubit state using the cluster state. Commun. Theor. Phys. 59(5), 568 (2013)

    Article  ADS  Google Scholar 

  28. Thapliyal, K., Pathak, A., Banerjee, S.: Quantum cryptography over non-Markovian channels (2016). arXiv:1608.06071

  29. Sharma, V., Thapliyal, K., Pathak, A., Banerjee, S.: A comparative study of protocols for secure quantum communication under noisy environment: single-qubit-based protocols versus entangled-state-based protocols. Quantum Inf. Process. 15(11), 4681 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Xiang, G.Y., Li, J., Yu, B., Guo, G.C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A 72(1), 012315 (2005)

    Article  ADS  Google Scholar 

  31. Chen, A.X., Deng, L., Li, J.H., Zhan, Z.M.: Remote preparation of an entangled state in nonideal conditions. Commun. Theor. Phys. 46(2), 221 (2006)

    Article  ADS  Google Scholar 

  32. Guan, X.W., Chen, X.B., Wang, L.C., Yang, Y.X.: Joint remote preparation of an arbitrary two-qubit state in noisy environments. Int. J. Theor. Phys. 53(7), 2236 (2014)

    Article  MATH  Google Scholar 

  33. Sharma, V., Shukla, C., Banerjee, S., Pathak, A.: Controlled bidirectional remote state preparation in noisy environment: a generalized view. Quantum Inf. Process. 14(9), 3441 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Liang, H.Q., Liu, J.M., Feng, S.S., Chen, J.G.: Remote state preparation via a GHZ-class state in noisy environments. J. Phys. B At. Mol. Opt. Phys. 44(11), 115506 (2011)

    Article  ADS  Google Scholar 

  35. Liang, H.Q., Liu, J.M., Feng, S.S., Chen, J.G., Xu, X.Y.: Effects of noises on joint remote state preparation via a GHZ-class channel. Quantum Inf. Process. 14(10), 3857 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Chen, Z.F., Jin-Ming, L.: Deterministic joint remote preparation of an arbitrary two-qubit state in the presence of noise. Chin. Phys. B 23(2), 020312 (2014)

    Article  ADS  Google Scholar 

  37. Li, J.F., Liu, J.M., Xu, X.Y.: Deterministic joint remote preparation of an arbitrary two-qubit state in noisy environments. Quantum Inf. Process. 14(9), 3465 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Adepoju, A.G., Falaye, B.J., Sun, G.H., Camacho-Nieto, O., Dong, S.H.: Joint remote state preparation (JRSP) of two-qubit equatorial state in quantum noisy channels. Phys. Lett. A 381(6), 581 (2017)

    Article  ADS  Google Scholar 

  39. Wang, M.M., Qu, Z.G.: Effect of quantum noise on deterministic joint remote state preparation of a qubit state via a GHZ channel. Quantum Inf. Process. 15(11), 4805 (2016)

    Article  ADS  MATH  Google Scholar 

  40. Liang, X.T.: Classical information capacities of some single qubit quantum noisy channels. Commun. Theor. Phys. 39(5), 537 (2003)

    Article  MathSciNet  Google Scholar 

  41. Rasetti, M., Zanardi, P.: Noiseless quantum codes. Phys. Rev. Lett. 79(17), 3306 (1997)

    Article  ADS  Google Scholar 

  42. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78(2), 022321 (2008)

    Article  ADS  Google Scholar 

  43. Rigolin, G., Fortes, R.: Fighting noise with noise in realistic quantum teleportation. Phys. Rev. A 92(1), 012338 (2015)

    Article  ADS  Google Scholar 

  44. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  45. Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81(12), 2594 (1998)

    Article  ADS  Google Scholar 

  46. Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-\(1/2\) particle can turn out to be 100. Phys. Rev. Lett. 60(14), 1351 (1988)

    Article  ADS  Google Scholar 

  47. Lee, J.C., Jeong, Y.C., Kim, Y.S., Kim, Y.H.: Experimental demonstration of decoherence suppression via quantum measurement reversal. Opt. Express 19(17), 16309 (2011)

    Article  ADS  Google Scholar 

  48. Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8(2), 117 (2012)

    Article  Google Scholar 

  49. Song, W., Yang, M., Cao, Z.L.: Purifying entanglement of noisy two-qubit states via entanglement swapping. Phys. Rev. A 89(1), 014303 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Grant Nos. 61601358, 61373131), the Natural Science Foundation of Shaanxi Province (2016JM6030), the Scientific Research Program Funded by Shaanxi Provincial Education Department (15JK1317), PAPD and CICAEET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Ming Wang.

Appendix

Appendix

$$\begin{aligned} \begin{aligned} V_0&=\frac{1}{2} \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} 1 &{} { e^{- i \theta _1} } &{} { e^{- i \theta _2} } &{} { e^{- i \theta _3} } \\ 1 &{} { -e^{- i \theta _1} } &{} { e^{- i \theta _2} } &{} { -e^{- i \theta _3} } \\ 1 &{} { -e^{- i \theta _1} } &{} { -e^{- i \theta _2} } &{} { e^{- i \theta _3} } \\ 1 &{} { e^{- i \theta _1} } &{} { -e^{- i \theta _2} } &{} { -e^{- i \theta _3} } \end{array}\right) ,\quad V_1=\frac{1}{2} \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} { e^{- i \theta _1} } &{} 1 &{} { e^{- i \theta _3} } &{} { e^{- i \theta _2} } \\ { -e^{- i \theta _1}} &{} 1 &{} { -e^{- i \theta _3}} &{} { e^{- i \theta _2} } \\ { -e^{- i \theta _1}} &{} 1 &{} { e^{- i \theta _3} } &{} { -e^{- i \theta _2} } \\ { e^{- i \theta _1} } &{} 1 &{} { -e^{- i \theta _3}} &{} { -e^{- i \theta _2} } \end{array}\right) ,\\ V_2&=\frac{1}{2} \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} { e^{- i \theta _2} } &{} { e^{- i \theta _3} } &{} 1 &{} { e^{- i \theta _1} } \\ { e^{- i \theta _2} } &{} { -e^{- i \theta _3}} &{} 1 &{} { -e^{- i \theta _1} } \\ { -e^{- i \theta _2}} &{} { e^{- i \theta _3} } &{} 1 &{} { -e^{- i \theta _1} } \\ { -e^{- i \theta _2}} &{} { -e^{- i \theta _3}} &{} 1 &{} { e^{- i \theta _1} } \end{array}\right) ,\quad V_3=\frac{1}{2} \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} { e^{- i \theta _3} } &{} { e^{- i \theta _2} } &{} { e^{- i \theta _1} } &{} 1 \\ { -e^{- i \theta _3}} &{} { e^{- i \theta _2} } &{} { -e^{- i \theta _1} } &{} 1 \\ { e^{- i \theta _3} } &{} { -e^{- i \theta _2} } &{} { -e^{- i \theta _1} } &{} 1 \\ { -e^{- i \theta _3}} &{} { -e^{- i \theta _2} } &{} { e^{- i \theta _1} } &{} 1 \end{array}\right) . \end{aligned} \end{aligned}$$
(31)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, MM., Qu, ZG., Wang, W. et al. Effect of noise on deterministic joint remote preparation of an arbitrary two-qubit state. Quantum Inf Process 16, 140 (2017). https://doi.org/10.1007/s11128-017-1594-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1594-y

Keywords

Navigation