Skip to main content
Log in

Beyond Qubits: An Extensive Noise Analysis for Qutrit Quantum Teleportation

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The four quantum noises-Bit Flip, Phase Flip, Depolarization, and Amplitude Damping-as well as any potential combinations of them, are examined in this paper’s investigation of quantum teleportation using qutrit states. Among the mentioned noises, we observed that phase flip has the highest fidelity. When compared to uncorrelated Amplitude Damping, we find that Correlated Amplitude Damping performs two times better. Finally, we conclude that for better fidelity, it is preferable to introduce the same noise in channel state if noise is unavoidable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Möller, M., Vuik, C.: On the impact of quantum computing technology on future developments in high-performance scientific computing. Ethics Inf. Technol. 19, 253–269 (2017)

    Google Scholar 

  2. Tóth, G., Apellaniz, I.: Quantum metrology from a quantum information science perspective. J. Phys. A Math. Theor. 47(42), 424006 (2014)

    ADS  MathSciNet  Google Scholar 

  3. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145 (2002)

    ADS  Google Scholar 

  4. Ma, X., Yuan, X., Cao, Z., Qi, B., Zhang, Z.: Quantum random number generation. Npj Quantum Inf. 2(1), 1–9 (2016)

    Google Scholar 

  5. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    ADS  MathSciNet  Google Scholar 

  6. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on einstein-podolsky-rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    ADS  MathSciNet  Google Scholar 

  7. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014) Theoretical Aspects of Quantum Cryptography–celebrating 30 years of BB84

  8. Devitt, S.J., Munro, W.J., Nemoto, K.: Quantum error correction for beginners. Rep. Prog. Phys. 76(7), 076001 (2013)

    ADS  Google Scholar 

  9. Bennett, C.H., Hayden, P., Leung, D.W., Shor, P.W., Winter, A.: Remote preparation of quantum states. IEEE Trans. Inf. Theory 51(1), 56–74 (2005)

    MathSciNet  Google Scholar 

  10. Chuan-Jia, S., Ji-Bing, L., Wei-Wen, C., Tang-Kun, L., Yan-Xia, H., Hong, L.: Entanglement dynamics of two-qubit system in different types of noisy channels. Commun. Theor. Phys. 51(6), 1013 (2009)

    ADS  Google Scholar 

  11. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865 (2009)

    ADS  MathSciNet  Google Scholar 

  12. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(6660), 575–579 (1997)

    ADS  Google Scholar 

  13. Muthukrishnan, A., Stroud, C.R.: Multivalued logic gates for quantum computation. Phys. Rev. A 62, 052309 (2000)

    ADS  MathSciNet  Google Scholar 

  14. Kaszlikowski, D., Gnaciński, P., Żukowski, M., Miklaszewski, W., Zeilinger, A.: Violations of local realism by two entangled \(\mathit{N}\)-dimensional systems are stronger than for two qubits. Phys. Rev. Lett. 85, 4418–4421 (2000)

    ADS  Google Scholar 

  15. Huang, Y., Yang, W.: Quantum teleportation via qutrit entangled state. Chin. J. Electron. 29(2), 228–232 (2020)

    Google Scholar 

  16. Krenn, M., Kottmann, J.S., Tischler, N., Aspuru-Guzik, A.: Conceptual understanding through efficient automated design of quantum optical experiments. Phys. Rev. X 11, 031044 (2021)

    Google Scholar 

  17. Gómez, E.S., Gómez, S., Machuca, I., Cabello, A., Pádua, S., Walborn, S.P., Lima, G.: Multidimensional entanglement generation with multicore optical fibers. Phys. Rev. Appl. 15, 034024 (2021)

    ADS  Google Scholar 

  18. Olislager, L., Mbodji, I., Woodhead, E., Cussey, J., Furfaro, L., Emplit, P., Massar, S., Huy, K.P., Merolla, J.M.: Implementing two-photon interference in the frequency domain with electro-optic phase modulators. New J. Phys. 14(4), 043015 (2012)

    ADS  Google Scholar 

  19. Bernhard, C., Bessire, B., Feurer, T., Stefanov, A.: Shaping frequency-entangled qudits. Phys. Rev. A 88, 032322 (2013)

    ADS  Google Scholar 

  20. Jin, R.B., Shimizu, R., Fujiwara, M., Takeoka, M., Wakabayashi, R., Yamashita, T., Miki, S., Terai, H., Gerrits, T., Sasaki, M.: Simple method of generating and distributing frequency-entangled qudits. Quantum Sci. Technol. 1(1), 015004 (2016)

    ADS  Google Scholar 

  21. Dada, A.C., Leach, J., Buller, G.S., Padgett, M.J., Andersson, E.: Experimental high-dimensional two-photon entanglement and violations of generalized bell inequalities. Nat. Phys. 7(9), 677–680 (2011)

    Google Scholar 

  22. Fickler, R., Lapkiewicz, R., Plick, W.N., Krenn, M., Schaeff, C., Ramelow, S., Zeilinger, A.: Quantum entanglement of high angular momenta. Science 338(6107), 640–643 (2012)

    ADS  Google Scholar 

  23. Erhard, M., Malik, M., Krenn, M., Zeilinger, A.: Experimental greenberger-horne-zeilinger entanglement beyond qubits. Nat. Phys. 12(12), 759–764 (2018)

    Google Scholar 

  24. Martin, A., Guerreiro, T., Tiranov, A., Designolle, S., Fröwis, F., Brunner, N., Huber, M., Gisin, N.: Quantifying photonic high-dimensional entanglement. Phys. Rev. Lett. 118, 110501 (2017)

    ADS  Google Scholar 

  25. Ikuta, T., Takesue, H.: Implementation of quantum state tomography for time-bin qudits. New J. Phys. 19(1), 013039 (2017)

    ADS  Google Scholar 

  26. Oh, S., Lee, S., Lee, H.W.: Fidelity of quantum teleportation through noisy channels. Phys. Rev. A 66, 022316 (2002)

    ADS  MathSciNet  Google Scholar 

  27. Yu, T., Eberly, J.H.: Sudden death of entanglement: classical noise effects. Opt. Commun. 264(2), 393–397 (2006)

    ADS  Google Scholar 

  28. Yu, T., Eberly, J.H.: Sudden death of entanglement. Sci 323(5914), 598–601 (2009)

    Google Scholar 

  29. Ann, K., Jaeger, G.: Entanglement sudden death in qubit-qutrit systems. Phys. Rev. A 372(5), 579–583 (2008)

    MathSciNet  Google Scholar 

  30. Ali, M.: Distillability sudden death in qutrit-qutrit systems under amplitude damping. J. Phys. B: At. Mol. Opt. Phys. 43(4), 045504 (2010)

    ADS  Google Scholar 

  31. Fortes, R., Rigolin, G.: Fighting noise with noise in realistic quantum teleportation. Phys. Rev. A 92(1), 012338 (2015)

    ADS  Google Scholar 

  32. Badziag, P., Horodecki, M., Horodecki, P., Horodecki, R.: Local environment can enhance fidelity of quantum teleportation. Phys. Rev. A 62, 012311 (2000)

    ADS  Google Scholar 

  33. Yeo, Y.: Local noise can enhance two-qubit teleportation. Phys. Rev. A 78, 022334 (2008)

    ADS  Google Scholar 

  34. Rao, DDB., Panigrahi, P.K., Mitra, C.: Teleportation in the presence of common bath decoherence at the transmitting station. Phys. Rev. A 78, 022336 (2008)

  35. Knoll, L.T., Schmiegelow, C.T., Larotonda, M.A.: Noisy quantum teleportation: An experimental study on the influence of local environments. Phys. Rev. A 90, 042332 (2014)

    ADS  Google Scholar 

  36. Fortes, R., Rigolin, G.: Probabilistic quantum teleportation in the presence of noise. Phys. Rev. A 93, 062330 (2016)

    ADS  Google Scholar 

  37. Fonseca, A.: High-dimensional quantum teleportation under noisy environments. Phys. Rev. A 100, 062311 (2019)

    ADS  Google Scholar 

  38. Seida, C., El Allati, A., Metwally, N., Hassouni, Y.: Bidirectional teleportation under correlated noise. Eur. Phys. J. D 75(6), 170 (2021)

    ADS  Google Scholar 

  39. Seida, C., El Allati, A., Metwally, N., Hassouni, Y.: Efficiency increasing of the bidirectional teleportation protocol via weak and reversal measurements. Phys. Scr. 97(2), 025102 (2022)

    ADS  Google Scholar 

  40. Seida, Chaibata, Seddik, Sanaa, Hassouni, Yassine, El Allati, Abderrahim: Memory effects on bidirectional teleportation. Phys. A: Stat. Mech. Appl. 606, 128115 (2022)

    MathSciNet  Google Scholar 

  41. Yeo, Y., Skeen, A.: Time-correlated quantum amplitude-damping channel. Phys. Rev. A 67(6), 064301 (2003)

    ADS  Google Scholar 

  42. Grassl, M., Kong, L., Wei, Z., Yin, Z.Q., Zeng, B.: Quantum error-correcting codes for qudit amplitude damping. IEEE Trans. Inf. Theory 64(6), 4674–4685 (2018)

    MathSciNet  Google Scholar 

  43. Schirmer, S.G., Solomon, A.I.: Constraints on relaxation rates for n-level quantum systems. Phys. Rev. A 70(2), 022107 (2004)

    ADS  Google Scholar 

  44. Li, Y.L., Zu, C.J., Wei, D.M.: Enhance quantum teleportation under correlated amplitude damping decoherence by weak measurement and quantum measurement reversal. Quantum Inf. Process 18, 1–11 (2019)

    ADS  MathSciNet  Google Scholar 

  45. Xu, R., Zhou, R.G., Li, Y., Jiang, S., Ian, H.: Enhancing robustness of noisy qutrit teleportation with markovian memory. EPJ Quantum Technol. 9(1), 1–17 (2022)

    Google Scholar 

Download references

Acknowledgements

We thank Kerala Theoretical Physics Initiative - Active Research Training (KTPI-ART) program for facilitating the research collaboration.

Author information

Authors and Affiliations

Authors

Contributions

All three authors equally contributed to this work.

Corresponding author

Correspondence to Arun Sebastian.

Ethics declarations

Competing of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sebastian, A., Mansar, A.N. & Randeep, N.C. Beyond Qubits: An Extensive Noise Analysis for Qutrit Quantum Teleportation. Int J Theor Phys 62, 258 (2023). https://doi.org/10.1007/s10773-023-05515-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05515-5

Keywords

Navigation