Skip to main content
Log in

Fidelity of quantum teleportation in correlated quantum channels

Quantum Information Processing Aims and scope Submit manuscript

Abstract

We have studied the standard quantum teleportation of an arbitrary single qubit state for the situation in which a two-qubit X-state as a resource successively passes through correlated quantum channels, including amplitude-damping, phase-damping, and depolarizing channels. Analytical expressions of full entangled fraction (which is related to fidelity of quantum teleportation) suffered from these noisy channels are presented. The results demonstrate that there is a threshold value \(\mu ^{\star }\), above which the source state even subjected to decoherence becomes useful for quantum teleportation. Besides, we also develop an effective strategy to enhance quantum teleportation fidelity under decoherence channels by means of filtering operation. The underlying physical mechanism of the enhancement of fidelity is also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wotters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channel. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  2. Jung, E., Hwang, M.R., Park, D.K., Son, J.W., Tamaryan, S.: Mixed-state entanglement and quantum teleportation through noisy channels. J. Phys. A: Math. Theor. 41, 385302 (2008)

    Article  MathSciNet  Google Scholar 

  3. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  4. Khoury, A.Z., Milman, P.: Quantum teleportation in the spin-orbit variables of photon pairs. Phys. Rev. A 83, 060301 (2011)

    Article  ADS  Google Scholar 

  5. Dáriano, G.M., Lo Presti, P., Sacchi, M.F.: Bell measurements and observables. Phys. Lett. A 272, 32 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  6. Espoukeh, P., Pedram, P.: Quantum teleportation through noisy channels with multi-qubit GHZ states. Quant. Inf. Process. 13, 1789 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  7. Hu, X., Gu, Y., Gong, Q., Guo, G.: Noise effect on fidelity of two-qubit teleportation. Phys. Rev. A 81, 054302 (2010)

    Article  ADS  Google Scholar 

  8. Bandyopadhyay, S., Ghosh, A.: Optimal fidelity for a quantum channel may be attained by nonmaximally entangled states. Phys. Rev. A 86, 020304 (2012)

    Article  ADS  Google Scholar 

  9. Knoll, L.T., Schmiegelow, C.T., Larotonda, M.A.: Noisy quantum teleportation: an experimental study on the influence of local environments. Phys. Rev. A 90, 042332 (2014)

    Article  ADS  Google Scholar 

  10. Fortes, R., Rigolin, G.: Probabilistic quantum teleportation via thermal entanglement. Phy. Rev. A 96, 022315 (2017)

    Article  ADS  Google Scholar 

  11. Yin, J., et al.: Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 488, 185188 (2012)

    Article  Google Scholar 

  12. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  13. Yeo, Y.: Teleportation via thermally entangled state of a two-qubit Heisenberg XX chain. Phys. Lett. A 309, 215 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  14. Pramanik, T., Majumdar, A.S.: Improving the fidelity of teleportation through noisy channels using weak measurement. Phys. Lett. A 377, 3209 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  15. Xiao, X., Yao, Y., Li, Y.L., Xie, Y.M.: Enhanced quantum teleportation in the background of Schwarzschild spacetime by weak measurements. Eur. Phys. J. Plus 135, 79 (2020)

    Article  Google Scholar 

  16. Li, Y.L., Zu, C.J., Wei, D.M.: Enhance quantum teleportation under correlated amplitude damping decoherence by weak measurement and quantum measurement reversal. Quant. Inf. Process. 18, 2 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  17. Taketani, B.G., de Melo, F., de Matos Filho, R.L.: Optimal teleportation with a noisy source. Phys. Rev. A 85, 020301 (2012)

    Article  ADS  Google Scholar 

  18. Knoll, L.T., Schmiegelow, ChT, Larotonda, M.A.: Noisy quantum teleportation: an experimental study on the influence of local environments. Phys. Rev. A 90, 042332 (2014)

    Article  ADS  Google Scholar 

  19. Van, H.N., Hoang, A.L.: Improving two-qubit state teleportation affected by amplitude damping noise based on choosing appropriate quantum channel, p. 07064 (2017). arXiv:1705.07064v2

  20. Bandyopadhyay, S.: Origin of noisy states whose teleportation fidelity can be enhanced through dissipation. Phys. Rev. A 65, 022302 (2002)

    Article  ADS  Google Scholar 

  21. Fortes, R., Rigolin, G.: Fighting noise with noise in realistic quantum teleportation. Phys. Rev. A 92, 012338 (2015)

    Article  ADS  Google Scholar 

  22. Yeo, Y.: Local noise can enhance two-qubit teleportation. Phys. Rev. A 78, 022334 (2008)

    Article  ADS  Google Scholar 

  23. Oh, S., Lee, S., Lee, H.W.: Fidelity of quantum teleportation through noisy channels. Phys. Rev. A 66, 022316 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  24. Bowen, G., Bose, S.: Teleportation as a depolarizing quantum channel, relative entropy, and classical capacity. Phys. Rev. Lett. 87, 267901 (2001)

    Article  ADS  Google Scholar 

  25. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  26. Horodecki, M., Horodecki, P., Horodecki, R.: General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A 60, 1888 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  27. Horodecki, R., Horodecki, M., Horodecki, P.: Teleportation, Bell’s inequalities and inseparability. Phys. Lett. A 222, 21 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  28. Macchiavello, C., Palma, G.M.: Entanglement-enhanced information transmission over a quantum channel with correlated noise. Phys. Rev. A 65, 050301 (2002)

    Article  ADS  Google Scholar 

  29. Yeo, Y., Skeen, A.: Time-correlated quantum amplitude-damping channel. Phys. Rev. A 67, 064301 (2003)

    Article  ADS  Google Scholar 

  30. Dáriano, A., Benenti, G., Falci, G.: Quantum capacity of dephasing channels with memory. New J. Phys. 9, 310 (2007)

    Article  ADS  Google Scholar 

  31. Macchiavello, C., Palma, G.M., Virmani, S.: Transition behavior in the channel capacity of two-quibit channels with memory. Phys. Rev. A 69, 010303 (2004)

    Article  ADS  Google Scholar 

  32. Jahangir, R., Arshed, N., Toor, A.H.: Quantum capacity of an amplitude-damping channel with memory. Quant. Inf. Process. 14, 765 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  33. Daffer, S., Wodkiewicz, K., McIver, J.: Quantum Markov channels for qubits. Phys. Rev. A 67, 062312 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  34. Daffer, S., Wodkiewicz, K., Cresser, J., McIver, J.: Depolarizing channel as a completely positive map with memory. Phys. Rev. A 70, 010304 (2004)

    Article  ADS  Google Scholar 

  35. Gisin, N.: Hidden quantum nonlocality revealed by local filters. Phys. Lett. A 210, 151 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  36. Sun, Q., Al-Amri, M., Davidovich, L., Suhail Zubairy, M.: Reversing entanglement change by a weak measurement. Phys. Rev. A 82, 052323 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Basic Research Program of China under Grant No. 2016YFA0301903, and the National Natural Science Foundation of China under Grants Nos. 11747107, 11174370, 11304387, 61632021, 11305262, 61205108 and 11574398, the Natural Science Foundation of Hunan Province (Grant No.2017JJ3346), the Project of Science and Technology Plan of Changsha (K1705022 and kc1809023), Scientific Research Project of Hunan Province Department of Education (19B060). Y. N. Guo is supported by the Program of Changsha Excellent Young Talents (kq1905005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping-xing Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Yn., Tian, Ql., Zeng, K. et al. Fidelity of quantum teleportation in correlated quantum channels. Quantum Inf Process 19, 182 (2020). https://doi.org/10.1007/s11128-020-02675-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02675-9

Navigation