Skip to main content
Log in

Redox properties and regulatory mechanism of the iron-quinone electron acceptor in photosystem II as revealed by FTIR spectroelectrochemistry

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Photosystem II (PSII) performs oxidation of water and reduction of plastoquinone through light-induced electron transfer. Electron transfer reactions at individual redox cofactors are controlled by their redox potentials, and the forward and backward electron flows in PSII are regulated by tuning them. It is, thus, crucial to accurately estimate the redox potentials of the cofactors and their shifts by environmental changes to understand the regulatory mechanisms in PSII. Fourier-transform infrared (FTIR) spectroelectrochemistry combined with a light-induced difference technique is a powerful method to investigate the mechanisms of the redox reactions in PSII. In this review, we introduce the methodology and the application of this method in the studies of the iron-quinone complex, which consists of two plastoquinone molecules, QA and QB, and the non-heme iron, on the electron-acceptor side of PSII. It is shown that FTIR spectroelectrochemistry is a useful method not only for estimating the redox potentials but also for detecting the reactions of nearby amino-acid residues coupled with the redox reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allakhverdiev SI, Tsuchiya T, Watabe K, Kojima A, Los DA, Tomo T, Klimov VV, Mimuro M (2011) Redox potentials of primary electron acceptor quinone molecule (QA) and conserved energetics of photosystem II in cyanobacteria with chlorophyll a and chlorophyll d. Proc Natl Acad Sci USA 108:8054–8058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauscher M, Mäntele W (1992) Electrochemical and infrared-spectroscopic characterization of redox reactions of p-quinones. J Phys Chem 96:11101–11108

    Article  CAS  Google Scholar 

  • Berthomieu C, Hienerwadel R (2001) Iron coordination in photosystem II: Interaction between bicarbonate and the QB pocket studied by Fourier transform infrared spectroscopy. Biochemistry 40:4044–4052

    Article  CAS  PubMed  Google Scholar 

  • Berthomieu C, Hienerwadel R (2009) Fourier transform infrared (FTIR) spectroscopy. Photosynth Res 101:157–170

    Article  CAS  PubMed  Google Scholar 

  • Berthomieu C, Nabedryk E, Mäntele W, Breton J (1990) Characterization by FTIR spectroscopy of the photoreduction of the primary quinone acceptor QA in photosystem II. FEBS Lett 269:363–367

    Article  CAS  PubMed  Google Scholar 

  • Bowes JM, Crofts AR, Itoh S (1979) High potential acceptor for photosystem II. Biochim Biophys Acta 547:320–335

    Article  CAS  PubMed  Google Scholar 

  • Brinkert K, De Causmaecker D, Krieger-Liszkay A, Fantuzzi A, Rutherford AW (2016) Bicarbonate-induced redox tuning in photosystem II for regulation and protection. Proc Natl Acad Sci USA 113:12144–12149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardona T, Sedoud A, Cox N, Rutherford AW (2012) Charge separation in photosystem II: a comparative and evolutionary overview. Biochim Biophys Acta Bioenerg 1817:26–43

    Article  CAS  Google Scholar 

  • Carrier JM (1965) Oxidation-reduction potential of plastoquinones. In: Goodwin TW (ed) Biochem chloroplasts Proc. Aberystwth, vol 2. Academic Press, New York, pp 551–557

    Google Scholar 

  • Chu HA (2013) Fourier transform infrared difference spectroscopy for studying the molecular mechanism of photosynthetic water oxidation. Front Plant Sci 4:146

    Article  PubMed  PubMed Central  Google Scholar 

  • Crofts AR, Robinson HH, Snozzi M (1984) Reactions of quinones at catalytic sites; a diffusional role in H-transfer. In: Sybesma C (ed) Advances in photosynthesis research. Springer, Dordrecht, pp 461–468

    Google Scholar 

  • Crofts AR, Robinson HH, Andrews K, Van Doren S, Berry E (1987) Catalytic sites for reduction and oxidation of quinones. In: Papa S, Chance B, Ernster L (eds) Cytochrome systems: molecular biology and bioenergetics. Springer, Dordrecht, pp 617–624

    Chapter  Google Scholar 

  • Dau H, Zaharieva I (2009) Principles, efficiency, and blueprint character of solar-energy conversion in photosynthetic water oxidation. Acc Chem Res 42:1861–1870

    Article  CAS  PubMed  Google Scholar 

  • De Causmaecker S, Douglass JS, Fantuzzi A, Nitschke W, Rutherford AW (2019) Energetics of the exchangeable quinone, QB, in photosystem II. Proc Natl Acad Sci USA 116:19458–19463

    Article  PubMed  PubMed Central  Google Scholar 

  • Debus RJ (2008) Protein ligation of the photosynthetic oxygen-evolving center. Coord Chem Rev 252:244–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debus RJ (2015) FTIR studies of metal ligands, networks of hydrogen bonds, and water molecules near the active site Mn4CaO5 cluster in photosystem II. Biochim Biophys Acta 1847:19–34

    Article  CAS  PubMed  Google Scholar 

  • Deligiannakis Y, Petrouleas V, Diner BA (1994) Binding of carboxylate anions at the non-heme Fe(II) of PSII. I. Effects on the QAFe2+ and QAFe3+ EPR spectra and the redox properties of the iron. Biochim Biophys Acta 1188:260–270

    Article  Google Scholar 

  • Diner BA, Petrouleas V, Wendoloski JJ (1991) The iron-quinone electron-acceptor complex of photosystem II. Physiol Plant 81:423–436

    Article  CAS  Google Scholar 

  • Forsman JA, Eaton-Rye JJ (2020) The D1:Ser268 residue of photosystem II contributes to an alternative pathway for QB protonation in the absence of bound bicarbonate. FEBS Lett 594:2953–2964

    Article  CAS  PubMed  Google Scholar 

  • Fufezan C, Rutherford AW, Krieger-Liszkay A (2002) Singlet oxygen production in herbicide-treated photosystem II. FEBS Lett 532:407–410

    Article  CAS  PubMed  Google Scholar 

  • Gisriel CJ, Zhou KF, Huang H-L, Debus RJ, Xiong Y, Brudvig GW (2020) Cryo-EM structure of monomeric photosystem II from Synechocystis sp. PCC 6803 lacking the water-oxidation complex. Joule 4:2131–2148

    Article  CAS  Google Scholar 

  • Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, Saenger W (2009) Cyanobacterial photosystem II at 2.9-Å resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol 16:334–342

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa K, Noguchi T (2014) Molecular interactions of the quinone electron acceptors QA, QB and QC in photosystem II as studied by the fragment molecular orbital method. Photosynth Res 120:113–123

    Article  CAS  PubMed  Google Scholar 

  • Hienerwadel R, Berthomieu C (1995) Bicarbonate binding to the non-heme iron of photosystem II investigated by Fourier transform infrared difference spectroscopy and 13C-labeled bicarbonate. Biochemistry 34:16288–16297

    Article  CAS  PubMed  Google Scholar 

  • Huang G, Xiao Y, Pi X, Zhao L, Zhu Q, Wang WD, Kuang T, Han G, Sui S-F, Shen J-R (2021) Structural insights into a dimeric Psb27-photosystem II complex from a cyanobacterium Thermosynechococcus vulcanus. Proc Natl Acad Sci USA 118:e2018053118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Idedan I, Tomo T, Noguchi T (2011) Herbicide effect on the photodamage process of photosystem II: Fourier transform infrared study. Biochim Biophys Acta Bioenerg 1807:1214–1220

    Article  CAS  Google Scholar 

  • Ido K, Gross CM, Guerrero F, Sedoud A, Lai TL, Ifuku K, Rutherford AW, Krieger-Liszkay A (2011) High and low potential forms of the QA quinone electron acceptor in photosystem II of Thermosynechococcus elongatus and spinach. J Photochem Photobiol B 104:154–157

    Article  CAS  PubMed  Google Scholar 

  • Ifuku K, Noguchi T (2016) Structural coupling of extrinsic proteins with the oxygen-evolving center in photosystem II. Front Plant Sci 7:84

    Article  PubMed  PubMed Central  Google Scholar 

  • Ikegami I, Katoh S (1973) Studies on chlorophyll fluorescence in chloroplasts II. Effect of ferricyaninde on induction of fluorescence in presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Plant Cell Physiol 14:829–836

    CAS  Google Scholar 

  • Ishikita H, Hasegawa K, Noguchi T (2011) How does the QB site influence propagate to the QA site in photosystem II? Biochemistry 50:5436–5442

    Article  CAS  PubMed  Google Scholar 

  • Johnson GN, Boussac A, Rutherford AW (1994) The origin of 40–50 °C thermoluminescence bands in photosystem II. Biochim Biophys Acta Bioenerg 1184:85–92

    Article  CAS  Google Scholar 

  • Johnson GN, Rutherford AW, Krieger A (1995) A change in the midpoint potential of the quinone QA in photosystem II associated with photoactivation of oxygen evolution. Biochim Biophys Acta Bioenerg 1229:202–207

    Article  Google Scholar 

  • Joliot P, Barbieri G, Chabaud R (1969) Model of the system II photochemical centers. Photochem Photobiol 10:309–329

    Article  CAS  Google Scholar 

  • Kato Y, Noguchi T (2014) Long-range interaction between the Mn4CaO5 cluster and the non-heme iron center in photosystem II as revealed by FTIR spectroelectrochemistry. Biochemistry 53:4914–4923

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Noguchi T (2016) FTIR spectroelectrochemistry combined with a light-induced difference technique: application to the iron-quinone electron acceptor in photosystem II. Biomed Spectrosc Imaging 5:269–282

    Article  Google Scholar 

  • Kato Y, Noguchi T (2021) Effects of stromal and lumenal side perturbations on the redox potential of the primary quinone electron acceptor QA in photosystem II. Biochemistry 60:3697

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Shibamoto T, Yamamoto S, Watanabe T, Ishida N, Sugiura M, Rappaport F, Boussac A (2012) Influence of the PsbA1/PsbA3, Ca2+/Sr2+ and Cl/Br exchanges on the redox potential of the primary quinone QA in photosystem II from Thermosynechococcus elongatus as revealed by spectroelectrochemistry. Biochim Biophys Acta Bioenerg 1817:1998–2004

    Article  CAS  Google Scholar 

  • Kato Y, Ishii R, Noguchi T (2016a) Comparative analysis of the interaction of the primary quinone QA in intact and Mn-depleted photosystem II membranes using light-induced ATR-FTIR spectroscopy. Biochemistry 55:6355–6358

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Nagao R, Noguchi T (2016b) Redox potential of the terminal quinone electron acceptor QB in photosystem II revealing the mechanism of electron-transfer regulation. Proc Natl Acad Sci USA 113:620–625

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Ohira A, Nagao R, Noguchi T (2019) Does the water-oxidizing Mn4CaO5 cluster regulate the redox potential of the primary quinone electron acceptor QA in photosystem II? A study by Fourier transform infrared spectroelectrochemistry. Biochim Biophys Acta Bioenerg 1860:148082

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Watanabe H, Noguchi T (2021) ATR-FTIR spectroelectrochemical study on the mechanism of the pH dependence of the redox potential of the non-heme iron in photosystem II. Biochemistry 60:2170–2178

    Article  CAS  PubMed  Google Scholar 

  • Kimura M, Kato Y, Noguchi T (2020) Protonation state of a key histidine ligand in the iron-quinone complex of photosystem II as revealed by light-induced ATR-FTIR spectroscopy. Biochemistry 59:4336–4343

    Article  CAS  PubMed  Google Scholar 

  • Kok B, Forbush B, McGloin M (1970) Cooperation of charges in photosynthetic O2 evolution−I. A linear four step mechanism. Photochem Photobiol 11:457–475

    Article  CAS  PubMed  Google Scholar 

  • Krieger A, Rutherford AW, Johnson GN (1995) On the determination of redox midpoint potential of the primary quinone electron acceptor, QA, in photosystem II. Biochim Biophys Acta Bioenerg 1229:193–201

    Article  Google Scholar 

  • Krieger-Liszkay A, Rutherford AW (1998) Influence of herbicide binding on the redox potential of the quinone acceptor in photosystem II: relevance to photodamage and phytotoxicity. Biochemistry 37:17339–17344

    Article  CAS  PubMed  Google Scholar 

  • Krieger-Liszkay A, Fufezan C, Trebst A (2008) Singlet oxygen production in photosystem II and related protection mechanism. Photosynth Res 98:551–564

    Article  CAS  PubMed  Google Scholar 

  • Lazár D (1999) Chlorophyll a fluorescence induction. Biochim Biophys Acta Bioenerg 1412:1–28

    Article  Google Scholar 

  • Lubitz W, Chrysina M, Cox N (2019) Water oxidation in photosystem II. Photosynth Res 142:105–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mäntele W (1993) Reaction-induced infrared difference spectroscopy for the study of protein function and reaction mechanisms. Trends Biochem Sci 18:197–202

    Article  PubMed  Google Scholar 

  • Müh F, Zouni A (2013) The nonheme iron in photosystem II. Photosynth Res 116:295–314

    Article  PubMed  Google Scholar 

  • Müh F, Glöckner C, Hellmich J, Zouni A (2012) Light-induced quinone reduction in photosystem II. Biochim Biophys Acta 1817:44–65

    Article  PubMed  Google Scholar 

  • Noguchi T (2007) Light-induced FTIR difference spectroscopy as a powerful tool toward understanding the molecular mechanism of photosynthetic oxygen evolution. Photosynth Res 91:59–69

    Article  CAS  PubMed  Google Scholar 

  • Noguchi T (2008a) Fourier transform infrared analysis of the photosynthetic oxygen-evolving center. Coord Chem Rev 252:336–346

    Article  CAS  Google Scholar 

  • Noguchi T (2008b) FTIR detection of water reactions in the oxygen-evolving center of photosystem II. Phil Trans R Soc B 363:1189–1195

    Article  CAS  PubMed  Google Scholar 

  • Noguchi T (2013) Monitoring the reactions of photosynthetic water oxidation using infrared spectroscopy. Biomed Spectrosc Imaging 2:115–128

    Article  CAS  Google Scholar 

  • Noguchi T (2015) Fourier transform infrared difference and time-resolved infrared detection of the electron and proton transfer dynamics in photosynthetic water oxidation. Biochim Biophys Acta 1847:35–45

    Article  CAS  PubMed  Google Scholar 

  • Noguchi T, Berthomieu C (2005) Molecular analysis by vibrational spectroscopy. In: Wydrzynski T, Satoh K (eds) Photosystem II: the light-driven water: plastoquinone oxidoreductase. Springer, Dordrecht, pp 367–387

    Google Scholar 

  • Noguchi T, Inoue Y (1995) Identification of FTIR signals from the non-heme iron in photosystem II. J Biochem 118:9–12

    Article  CAS  PubMed  Google Scholar 

  • Nozawa Y, Noguchi T (2018) pH-dependent regulation of the relaxation rate of the radical anion of the secondary quinone electron acceptor QB in photosystem II as revealed by Fourier transform infrared spectroscopy. Biochemistry 57:2828–2836

    Article  CAS  PubMed  Google Scholar 

  • Okamura MY, Paddock ML, Graige MS, Feher G (2000) Proton and electron transfer in bacterial reaction centers. Biochim Biophys Acta Bioenerg 1458:148–163

    Article  CAS  Google Scholar 

  • Okubo T, Noguchi T (2007) Selective detection of the structural changes upon photoreactions of several redox cofactors in photosystem II by means of light-induced ATR-FTIR difference spectroscopy. Spectrochim Acta A 66:863–868

    Article  Google Scholar 

  • Ono T, Inoue Y (1988) Discrete extraction of the Ca atom functional for O2 evolution in higher-plant photosystem II by a simple low pH treatment. FEBS Lett 227:147–152

    Article  CAS  Google Scholar 

  • Papageorgiou GC, Govindjee (2011) Photosystem II fluorescence: slow changes—scaling from the past. J Photochem Photobiol B: Biol 104:258–270

    Article  CAS  Google Scholar 

  • Petrouleas V, Crofts AR (2005) The quinone iron acceptor complex. In: Wydrzynski T, Satoh K (eds) Photosystem II: the light-driven water: plastoquinone oxidoreductase. Springer, Dordrecht, pp 177–206

    Google Scholar 

  • Petrouleas V, Diner BA (1986) Identification of Q400, a high-potential electron acceptor of photosystem II, with the iron of the quinone-iron acceptor complex. Biochim Biophys Acta 849:264–275

    Article  CAS  Google Scholar 

  • Rappaport F, Diner BA (2008) Primary photochemistry and energetics leading to the oxidation of the (Mn)4Ca cluster and to the evolution of molecular oxygen in photosystem II. Coord Chem Rev 252:259–272

    Article  CAS  Google Scholar 

  • Robinson HH, Crofts AR (1984) Kinetics of proton uptake and the oxidation-reduction reactions of the quinone acceptor complex of PS II from pea chloroplasts. In: Sybesma C (ed) Advances in photosynthesis research. Springer, Dordrecht, pp 477–480

    Google Scholar 

  • Roose JL, Frankel LK, Bricker TM (2010) Documentation of significant electron transport defects on the reducing side of photosystem II upon removal of the PsbP and PsbQ extrinsic proteins. Biochemistry 49:36–41

    Article  CAS  PubMed  Google Scholar 

  • Roose JL, Frankel LK, Mummadisetti MP, Bricker TM (2016) The extrinsic proteins of photosystem II: update. Planta 243:880–908

    Article  Google Scholar 

  • Rutherford AW, Krieger-Liszkay A (2001) Herbicide-induced oxidative stress in photosystem II. Trends Biochem Sci 26:648–653

    Article  CAS  PubMed  Google Scholar 

  • Rutherford AW, Osyczka A, Rappaport F (2012) Back-reactions, short-circuits, leaks and other energy wasteful reactions in biological electron transfer: redox tuning to survive life in O2. FEBS Lett 586:603–616

    Article  CAS  PubMed  Google Scholar 

  • Saito K, Rutherford AW, Ishikita H (2013) Mechanism of proton-coupled quinone reduction in photosystem II. Proc Natl Acad Sci USA 110:954–959

    Article  CAS  PubMed  Google Scholar 

  • Schansker G, Toth SZ, Holzwarth AR, Garab G (2014) Chlorophyll a fluorescence: beyond the limits of the QA model. Photosynth Res 120:43–58

    Article  CAS  PubMed  Google Scholar 

  • Semin BK, Davletshina LN, Mamedov MD (2018) Effect of different methods of Ca2+ extraction from PSII oxygen-evolving complex on the QA oxidation kinetics. Photosynth Res 136:83–91

    Article  CAS  PubMed  Google Scholar 

  • Shen JR (2015) The structure of photosystem II and the mechanism of water oxidation in photosynthesis. Annu Rev Plant Biol 66:23–48

    Article  CAS  PubMed  Google Scholar 

  • Shevela D, Eaton-Rye JJ, Shen JR, Govindjee (2012) Photosystem II and the unique role of bicarbonate: a historical perspective. Biochim Biophys Acta 1817:1134–1151

    Article  CAS  PubMed  Google Scholar 

  • Shibamoto T, Kato Y, Sugiura M, Watanabe T (2009) Redox potential of the primary plastoquinone electron acceptor QA in photosystem II from Thermosynechococcus elongatus determined by spectroelectrochemistry. Biochemistry 48:10682–10684

    Article  CAS  PubMed  Google Scholar 

  • Shibamoto T, Kato Y, Nagao R, Yamazaki T, Tomo T, Watanabe T (2010) Species-dependence of the redox potential of the primary quinone electron acceptor QA in photosystem II verified by spectroelectrochemistry. FEBS Lett 584:1526–1530

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Nagasaka MA, Sugiura M, Noguchi T (2005) Fourier transform infrared spectrum of the secondary quinone electron acceptor QB in photosystem II. Biochemistry 44:11323–11328

    Article  CAS  PubMed  Google Scholar 

  • Swallow AJ (1982) Physical chemistry of semiquinones. In: Trumpower BL (ed) Function of quinones in energy conserving systems. Academic Press, New York, pp 59–72

    Chapter  Google Scholar 

  • Takahashi R, Boussac A, Sugiura M, Noguchi T (2009) Structural coupling of a tyrosine side chain with the non-heme iron center in photosystem II as revealed by light-induced Fourier transform infrared difference spectroscopy. Biochemistry 48:8994–9001

    Article  CAS  PubMed  Google Scholar 

  • Takahashi R, Hasegawa K, Takano A, Noguchi T (2010) Structures and binding sites of phenolic herbicides in the QB pocket of photosystem II. Biochemistry 49:5445–5454

    Article  CAS  PubMed  Google Scholar 

  • Takano A, Takahashi R, Suzuki H, Noguchi T (2008) Herbicide effect on the hydrogen-bonding interaction of the primary quinone electron acceptor QA in photosystem II as studied by Fourier transform infrared spectroscopy. Photosynth Res 98:159–167

    Article  CAS  PubMed  Google Scholar 

  • Taoka S, Crofts AR (1990) Two-electron gate in triazine resistant and susceptible Amaranthus hybridus. In: Baltscheffsky M (ed) Current research in photosynthesis. Springer, Dordrecht, pp 547–550

    Chapter  Google Scholar 

  • Tokano T, Kato Y, Sugiyama S, Uchihashi T, Noguchi T (2020) Structural dynamics of a protein domain relevant to the water-oxidizing complex in photosystem II as visualized by high-speed atomic force microscopy. J Phys Chem B 124:5847–5857

    Article  CAS  PubMed  Google Scholar 

  • Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60

    Article  CAS  PubMed  Google Scholar 

  • van Mieghem FJE, Nitschke W, Mathis P, Rutherford AW (1989) The influence of the quinone-iron electron acceptor complex on the reaction centre photochemistry of photosystem II. Biochim Biophys Acta Bioenerg 977:207–214

    Article  Google Scholar 

  • van Rensen JJS, Tonk WJM, de Bruijn SM (1988) Involvement of bicarbonate in the protonation of the secondary quinone electron-acceptor of photosystem II via the non-haem iron of the quinone-iron acceptor complex. FEBS Lett 226:347–351

    Article  Google Scholar 

  • Vass I (2011) Role of charge recombination processes in photodamage and photoprotection of the photosystem II complex. Physiol Plant 142:6–16

    Article  CAS  PubMed  Google Scholar 

  • Vass I, Cser K (2009) Janus-faced charge recombinations in photosystem II photoinhibition. Trends Plant Sci 14:200–205

    Article  CAS  PubMed  Google Scholar 

  • Vass I, Demeter S (1982) Classification of Photosystem II inhibitors by thermodynamic characterization of the thermoluminescence of inhibitor-treated chloroplasts. Biochim Biophys Acta Bioenerg 682:496–499 

    Article  CAS  Google Scholar 

  • Vass I, Styring S (1991) pH-dependent charge equilibria between tyrosine-D and the S states in photosystem II. Estimation of relative midpoint redox potentials. Biochemistry 30:830–839

    Article  CAS  PubMed  Google Scholar 

  • Vinyard DJ, Brudvig GW (2017) Progress toward a molecular mechanism of water oxidation in photosystem II. Annu Rev Phys Chem 68:101–116

    Article  CAS  PubMed  Google Scholar 

  • Yano J, Yachandra V (2014) Mn4Ca cluster in photosynthesis: where and how water is oxidized of dioxygen. Chem Rev 114:4175–4205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zabret J, Bohn S, Schuller SK, Arnolds O, Möller M, Meier-Credo J, Liauw P, Chan A, Tajkhorshid E, Langer JD, Stoll P, Krieger-Liszkay A, Engel BD, Rudack T, Schuller JM, Nowaczyk MM (2021) Structural insights into photosystem II assembly. Nat Plants 7:524–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by JSPS KAKENHI Grant Number JP17H05721, JP19H04722, JP19H02674 (to Y.K.), JP17H06435, and JP17H06433 (to T.N.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuki Kato or Takumi Noguchi.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kato, Y., Noguchi, T. Redox properties and regulatory mechanism of the iron-quinone electron acceptor in photosystem II as revealed by FTIR spectroelectrochemistry. Photosynth Res 152, 135–151 (2022). https://doi.org/10.1007/s11120-021-00894-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-021-00894-4

Keywords

Navigation