Skip to main content
Log in

Molecular interactions of the quinone electron acceptors QA, QB, and QC in photosystem II as studied by the fragment molecular orbital method

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Molecular interactions of the three plastoquinone electron acceptors, QA, QB, and QC, in photosystem II (PSII) were studied by fragment molecular orbital (FMO) calculations. Calculations at the FMO-MP2/6-31G level using PSII models deduced from the X-ray structure of the PSII complexes from Thermosynechococcus elongatus provided the binding energies of QA, QB, and QC as −56.1, −37.9, and −30.1 kcal/mol, respectively. The interaction energies with surrounding fragments showed that the contributions of lipids and cofactors were 0, 24 and 45 % of the total interaction energies for QA, QB, and QC, respectively. These results are consistent with the fact that QA is strongly bound to the PSII protein, whereas QB functions as a substrate and is exchangeable with other quinones and herbicides, and the presence of QC is highly dependent on PSII preparations. It was further shown that the isoprenoid tail is more responsible for the binding than the head group in all the three quinones, and that dispersion forces rather than electrostatic interactions mainly contribute to the stabilization. The relevance of the stability and molecular interactions of QA, QB, and QC to their physiological functions is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

FMO:

Fragment molecular orbital

PQ:

Plastoquinone

PSII:

Photosystem II

P680:

Special pair chlorophylls in PSII

Pheo:

Redox-active pheophytin in PSII

Car:

β-Carotene

Chl:

Chlorophyll

Cyt:

Cytochrome

DGDG:

Digalactosyl-diacylglycerol

SQDG:

Sulfoquinovosyl-diacylglycerol

MGDG:

Monogalactosyl-diacylglycerol

PG:

Phosphatidyl-glycerol

References

  • Advance/BioStation version 3.3 (2011) AdvanceSoft Corporation, Tokyo, Japan

  • Bentley FK, Luo H, Dilbeck P, Burnap RL, Eaton-Rye JJ (2008) Effects of inactivating psbM and psbT on photodamage and assembly of photosystem II in Synechocystis sp. PCC 6803. Biochemistry 47:11637–11646

    Article  CAS  PubMed  Google Scholar 

  • Broser M, Gabdulkhakov A, Kern J, Guskov A, Müh F, Saenger W, Zouni A (2010) Crystal structure of monomeric photosystem II from Thermosynechococcus elongatus at 3.6-Å resolution. J Biol Chem 285:26255–26262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crofts AR, Wraight CA (1983) The electrochemical domain of photosynthesis. Biochim Biophys Acta 726:149–185

    Article  CAS  Google Scholar 

  • DeLano WL (2002) The PyMOL molecular graphics system. http://www.pymol.org

  • Diner BA, Rappaport F (2002) Structure, dynamics, and energetics of the primary photochemistry of photosystem II of oxygenic photosynthesis. Annu Rev Plant Biol 53:551–580

    Article  CAS  PubMed  Google Scholar 

  • Fedorov DG, Kitaura K (2007) Pair interaction energy decomposition analysis. J Comput Chem 28:222–237

    Article  CAS  PubMed  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838

    Article  CAS  PubMed  Google Scholar 

  • Fukuzawa K, Kitaura K, Uebayasi M, Nakata K, Kaminuma T, Nakano T (2005) Ab initio quantum mechanical study of the binding energies of human estrogen receptor alpha with its ligands: an application of fragment molecular orbital method. J Comput Chem 26:1–10

    Article  CAS  PubMed  Google Scholar 

  • Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, Saenger W (2009) Cyanobacterial photosystem II at 2.9-Ǻ resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol 16:334–342

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa K, Mohri S, Yokoyama T (2010) Fragment molecular orbital calculations reveal that the E200K mutation markedly alters local structural stability in the human prion protein. Prion 4:38–44

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hillier W, Messinger J (2005) Mechanism of photosynthetic oxygen production. In: Wydrzynski T, Satoh K (eds) Photosystem II: the light-driven water:plastoquinone oxidoreductase. Springer, Dordrecht, pp 567–608

    Chapter  Google Scholar 

  • Ikegami T, Ishida T, Fedorov DG, Kitaura K, Inadomi Y, Umeda H, Yokokawa M, Sekiguchi S (2010) Fragment molecular orbital study of the electronic excitations in the photosynthetic reaction center of Blastochloris viridis. J Comput Chem 31:447–454

    CAS  PubMed  Google Scholar 

  • Isgandarova S, Renger G, Messinger J (2003) Functional differences of photosystem II from Synechococcus elongatus and spinach characterized by flash induced oxygen evolution patterns. Biochemistry 42:8929–8938

    Article  CAS  PubMed  Google Scholar 

  • Ishikita H, Knapp EW (2005) Control of quinone redox potentials in photosystem II: electron transfer and photoprotection. J Am Chem Soc 127:14714–14720

    Article  CAS  PubMed  Google Scholar 

  • Ishikita H, Hasegawa K, Noguchi T (2011) How does the QB site influence propagate to the QA site in Photosystem II? Biochemistry 50:5436–5442

    Article  CAS  PubMed  Google Scholar 

  • Ito M, Fukuzawa K, Mochizuki Y, Nakano T, Tanaka S (2008) Ab initio fragment molecular orbital study of molecular interactions between liganded retinoid X receptor and its coactivator; Part II: influence of mutations in transcriptional activation function 2 activating domain core on the molecular interactions. J Phys Chem A 112:1986–1998

    Article  CAS  PubMed  Google Scholar 

  • Itoh Y, Sando A, Ikeda K, Suzuki T, Tokiwa H (2012) Origin of the inhibitory activity of 4-O-substituted sialic derivatives of human parainfluenza virus. Glycoconj J 29:231–237

    Article  CAS  PubMed  Google Scholar 

  • Kaminskaya O, Shuvalov VA, Renger G (2007a) Evidence for a novel quinone-binding site in the photosystem II (PS II) complex that regulates the redox potential of cytochrome b559. Biochemistry 46:1091–1105

    Article  CAS  PubMed  Google Scholar 

  • Kaminskaya O, Shuvalov VA, Renger G (2007b) Two reaction pathways for transformation of high potential cytochrome b559 of PSII into the intermediate potential form. Biochim Biophys Acta 1767:550–558

    Article  CAS  PubMed  Google Scholar 

  • Kern J, Guskov A (2011) Lipids in photosystem II: multifunctional cofactors. J Photochem Photobiol B 104:19–34

    Article  CAS  PubMed  Google Scholar 

  • Kitaura K, Ikeo E, Asada T, Nakano T, Uebayasi M (1999) Fragment molecular orbital method: an approximate computational method for large molecules. Chem Phys Lett 313:701–706

    Article  CAS  Google Scholar 

  • Koike H, Yoneyama K, Kashino Y, Satoh K (1996) Mechanism of electron flow through the QB site in photosystem II. 4. Reaction mechanism of plastoquinone derivatives at the QB site in spinach photosystem II membrane fragments. Plant Cell Physiol 37:983–988

    Article  CAS  Google Scholar 

  • Kruk J, Strzalka K (2001) Redox changes of cytochrome b559 in the presence of plastoquinones. J Biol Chem 276:86–91

    Article  CAS  PubMed  Google Scholar 

  • Luo H, Eaton-Rye JJ (2008) Directed mutagenesis of the transmembrane domain of the PsbL subunit of photosystem II in Synechocystis sp. PCC 6803. Photosynth Res 98:337–347

    Article  CAS  PubMed  Google Scholar 

  • Mazanetz MP, Ichihara O, Law RJ, Whittaker M (2011) Prediction of cyclin-dependent kinase 2 inhibitor potency using the fragment molecular orbital method. J Cheminf 3:2

    Article  CAS  Google Scholar 

  • Messinger J, Noguchi T, Yano J (2011) Photosynthetic O2 evolution, Chapter 7. In: Wydrzynski T, Hillier W (eds) Molecular solar fuels. Royal Society of Chemistry, Cambridge, pp 163–207

  • Minagawa J, Narusaka Y, Inoue Y, Satoh K (1999) Electron transfer between QA and QB in photosystem II is thermodynamically perturbed in phototolerant mutants of Synechocystis sp. PCC 6803. Biochemistry 38:770–775

    Article  CAS  PubMed  Google Scholar 

  • Mizusawa N, Wada H (2012) The role of lipids in photosystem II. Biochim Biophys Acta 1817:194–208

    Article  CAS  PubMed  Google Scholar 

  • Müh F, Glöckner C, Hellmich J, Zouni A (2012) Light-induced quinone reduction in photosystem II. Biochim Biophys Acta 1817:44–65

    Article  PubMed  Google Scholar 

  • Nakano T, Kaminuma T, Sato T, Akiyama Y, Uebayasim M, Kitaura K (2000) Fragment molecular orbital method: application to polypeptides. Chem Phys Lett 318:614–618

    Article  CAS  Google Scholar 

  • Nakano T, Kaminuma T, Uebayasi M, Nakata Y (2001) 3D structure based atomic charge calculation for molecular mechanics and molecular dynamics simulations. Chem-Biol Inform J 1:35–40

    Article  Google Scholar 

  • Nakano T, Kaminuma T, Sato T, Fukuzawa K, Akiyama Y, Uebayasi M, Kitaura K (2002) Fragment molecular orbital method: use of approximate electrostatic potential. Chem Phys Lett 351:475–480

    Article  CAS  Google Scholar 

  • Oettmeier W (1999) Herbicide resistance and supersensitivity in photosystem II. Cell Mol Life Sci 55:1255–1277

    Article  CAS  PubMed  Google Scholar 

  • Ohad I, Dal Bosco C, Herrmann RG, Meurer J (2004) Photosystem II proteins PsbL and PsbJ regulate electron flow to the plastoquinone pool. Biochemistry 43:2297–2308

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi N, Kashino Y, Satoh K, Ozawa S, Takahashi Y (2007) Chloroplast-encoded polypeptide PsbT is involved in the repair of primary electron acceptor QA of photosystem II during photoinhibition in Chlamydomonas reinhardtii. J Biol Chem 282:7107–7115

    Article  CAS  PubMed  Google Scholar 

  • Ozawa T, Okazaki K, Kitaura K (2011) Importance of CH/π hydrogen bonds in recognition of the core motif in proline-recognition domains: an ab initio fragment molecular orbital study. J Comput Chem 32:2774–2782

    Article  CAS  PubMed  Google Scholar 

  • Petrouleas V, Crofts AR (2005) The quinone iron acceptor complex. In: Wydrzynski T, Satoh K (eds) Photosystem II: the light-driven water:plastoquinone oxidoreductase. Springer, Dordrecht, pp 177–206

    Chapter  Google Scholar 

  • Regel RE, Ivleva NB, Zer H, Meurer J, Shestakov SV, Herrmann RG, Pakrasi HB, Ohad I (2001) Deregulation of electron flow within photosystem II in the absence of the PsbJ protein. J Biol Chem 276:41473–41478

    Article  CAS  PubMed  Google Scholar 

  • Renger G (2012) Mechanism of light induced water splitting in photosystem II of oxygen evolving photosynthetic organisms. Biochim Biophys Acta 1817:1164–1176

    Article  CAS  PubMed  Google Scholar 

  • Renger G, Holzwarth AR (2005) Primary electron transfer. In: Wydrzynski T, Satoh K (eds) Photosystem II: the light-driven water:plastoquinone oxidoreductase. Springer, Dordrecht, pp 139–175

    Chapter  Google Scholar 

  • Satoh K, Koike H, Ichimura T, Katoh S (1992) Binding affinities of benzoquinones to the QB site of photosystem II in Synechococcus oxygen-evolving preparation. Biochim Biophys Acta 1102:45–52

    Article  CAS  Google Scholar 

  • Satoh K, Kashino Y, Koike H (1993) Electron-transport from QA to thymoquinone in a Synechococcus oxygen-evolving photosystem II preparation: role of QB and binding affinity of thymoquinone to the QB site. Z Naturforsch C48:174–178

    Google Scholar 

  • Shibamoto T, Kato Y, Sugiura M, Watanabe T (2009) Redox potential of the primary plastoquinone electron acceptor QA in photosystem II from Thermosynechococcus elongatus determined by spectroelectrochemistry. Biochemistry 48:10682–10684

    Article  CAS  PubMed  Google Scholar 

  • Tang XS, Diner BA (1994) Biochemical and spectroscopic characterization of a new oxygen-evolving photosystem II core complex from the cyanobacterium Synechocystis PCC 6803. Biochemistry 33:4594–4603

    Article  CAS  PubMed  Google Scholar 

  • Ten-no S, Iwata S (1995) Three-center expansion of electron repulsion integrals with linear combination of atomic electron distributions. Chem Phys Lett 240:578–584

    Article  CAS  Google Scholar 

  • Ten-no S, Iwata S (1996) Multiconfiguration self-consistent field procedure employing linear combination of atomic-electron distributions. J Chem Phys 105:3604–3611

    Article  CAS  Google Scholar 

  • Trebst A (2007) Inhibitors in the functional dissection of the photosynthetic electron transport system. Photosynth Res 92:217–224

    Article  CAS  PubMed  Google Scholar 

  • Umate P, Fellerer C, Schwenkert S, Zoryan M, Eichacker LA, Sadanandam A, Ohad I, Herrmann RG, Meurer J (2008) Impact of PsbTc on forward and back electron flow, assembly, and phosphorylation patterns of photosystem II in tobacco. Plant Physiol 148:1342–1353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60

    Article  CAS  PubMed  Google Scholar 

  • Van Mieghem FJE, Nitschke W, Mathis P, Rutherford AW (1989) The influence of the quinone-iron electron acceptor complex on the reaction centre photochemistry of photosystem II. Biochim Biophys Acta 977:207–214

    Article  Google Scholar 

  • Vermaas WFJ, Arntzen CJ (1983) Synthetic quinones influencing herbicide binding and photosystem II electron transport. The effects of triazine-resistance on quinone binding properties in thylakoid membranes. Biochim Biophys Acta 725:483–491

    Article  CAS  Google Scholar 

  • Word JM, Lovell SC, Richardson JS, Richardson DC (1999) Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. J Mol Biol 285:1735–1747

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Munei Y, Hitaoka S, Chuman H (2010) Correlation analyses on binding affinity of substituted benzenesulfonamides with carbonic anhydrase using ab initio MO calculations on their complex structures. J Chem Inf Model 50:850–860

    Article  CAS  PubMed  Google Scholar 

  • Yoshioka A, Fukuzawa K, Mochizuki Y, Yamashita K, Nakano T, Okiyama Y, Nobusawa E, Nakajima K, Tanaka S (2011) Prediction of probable mutations in influenza virus hemagglutinin protein based on large-scale ab initio fragment molecular orbital calculations. J Mol Graph Model 30:110–119

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (21370063, 23657099, and 24000018 to T.N.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Koji Hasegawa or Takumi Noguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasegawa, K., Noguchi, T. Molecular interactions of the quinone electron acceptors QA, QB, and QC in photosystem II as studied by the fragment molecular orbital method. Photosynth Res 120, 113–123 (2014). https://doi.org/10.1007/s11120-012-9787-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-012-9787-9

Keywords

Navigation