Skip to main content
Log in

The extrinsic proteins of photosystem II: update

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Recent investigations have provided important new insights into the structures and functions of the extrinsic proteins of Photosystem II.

This review is an update of the last major review on the extrinsic proteins of Photosystem II (Bricker et al., Biochemistry 31:4623–4628 2012). In this report, we will examine advances in our understanding of the structure and function of these components. These proteins include PsbO, which is uniformly present in all oxygenic organisms, the PsbU, PsbV, CyanoQ, and CyanoP proteins, found in the cyanobacteria, and the PsbP, PsbQ and PsbR proteins, found in the green plant lineage. These proteins serve to stabilize the Mn4CaO5 cluster and optimize oxygen evolution at physiological calcium and chloride concentrations. The mechanisms used to perform these functions, however, remain poorly understood. Recently, important new findings have significantly advanced our understanding of the structures, locations and functions of these important subunits. We will discuss the biochemical, structural and genetic studies that have been used to elucidate the roles played by these proteins within the photosystem and their locations within the photosynthetic complex. Additionally, we will examine open questions needing to be addressed to provide a coherent picture of the role of these components within the photosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Using the Synechocystis PCC sp. 6803 numbering system, these mutants were originally designated R305K and R305D. In this article, unless otherwise specified, we will follow the common practice of numbering the amino acid residues using the T. vulcanus numbering system.

  2. A structure (PDB: 4YUU) has been deposited in the Protein Data Bank and, and is currently on hold pending publication.

References

  • Abasova L, Deak Z, Schwarz R, Vass I (2011) The role of the PsbU subunit in the light sensitivity of PSII in the cyanobacterium Synechococcus 7942. J Photochem Photobiol B 105:149–156

    Article  CAS  PubMed  Google Scholar 

  • Allahverdiyeva Y, Mamedov F, Holmström M, Nurmi M, Lundin B, Styring S, Spetea C, Aro E-M (2009) Comparison of the electron transport properties of the psbo1 and psbo2 mutants of Arabidopsis thaliana. Biochim Biophys Acta 1787:1230–1237

    Article  CAS  PubMed  Google Scholar 

  • Allahverdiyeva Y, Suorsa M, Rossi F, Pavesi A, Kater M, Antonacci A, Tadini L, Pribil M, Schneider A, Wanner G, Leister D, Aro E-M, Barbato R, Pesaresi P (2013) Arabidopsis plants lacking PsbQ and PsbR subunits of the oxygen-evolving complex show altered PSII super-complex organization and short-term adaptive mechanisms. Plant J 75:671–684

    Article  CAS  PubMed  Google Scholar 

  • Aoi M, Kashino Y, Ifuku K (2014) Function and association of CyanoP in photosystem II of Synechocystis sp. PCC 6803. Res Chem Intermed 40:3209–3217

    Article  CAS  Google Scholar 

  • Balint I, Bhattacharya J, Perelman A, Schatz D, Moskovitz Y, Keren N, Schwarz R (2006) Inactivation of the extrinsic subunit of photosystem II, PsbU, in Synechococcus PCC 7942 results in elevated resistance to oxidative stress. FEBS Lett 580:2117–2122

    Article  CAS  PubMed  Google Scholar 

  • Balsera M, Arellano JB, Revuelta JL, de las Rivas J, Hermoso JA (2005) The 1.49 A resolution crystal structure of PsbQ from photosystem II of Spinacia oleracea reveals a PPII structure in the N-terminal region. J Mol Biol 350:1051–1060

    Article  CAS  PubMed  Google Scholar 

  • Boekema EJ, van Breemen JF, van Roon H, Dekker JP (2000) Arrangement of photosystem II supercomplexes in crystalline macrodomains within the thylakoid membrane of green plant chloroplasts. J Mol Biol 301:1123–1133

    Article  CAS  PubMed  Google Scholar 

  • Bondar A-N, Dau H (2012) Extended protein/water H-bond networks in photosynthetic water oxidation. Biochim Biophys Acta 1817:1177–1190

    Article  CAS  PubMed  Google Scholar 

  • Bondarava N, Krieger-Liszkay A (2007) Manganese binding to the 23 kDa extrinsic protein of photosystem II. Biochim Biophys Acta 1767:583–588

    Article  CAS  PubMed  Google Scholar 

  • Bondarava N, Beyer P, Krieger-Liszkay A (2005) Function of the 23 kDa extrinsic protein of Photosystem II as a manganese binding protein and its role in photoactivation. Biochim Biophys Acta 1708:63–70

    Article  CAS  PubMed  Google Scholar 

  • Bricker TM (1992) Oxygen evolution in the absence of the 33 kDa manganese-stabilizing protein. Biochemistry 31:4623–4628

    Article  CAS  PubMed  Google Scholar 

  • Bricker TM, Burnap RL (2005) The extrinsic proteins of Photosystem II. In: Wydrzynski T, Satoh K (eds) Photosystem II: the water/plastoquinone oxido-reductase of photosynthesis. Springer, Dordrecht, pp 95–120

    Chapter  Google Scholar 

  • Bricker TM, Frankel LK (1998) The structure and function of the 33 kDa extrinsic protein of photosystem II. A critical review. Photosyn Res 56:157–173

    Article  CAS  Google Scholar 

  • Bricker TM, Frankel LK (2008) The Arabidopsis psbo1 mutant cannot efficiently utilize calcium in support of photosynthetic oxygen evolution. J Biol Chem 283:29022–29027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bricker TM, Frankel LK (2011) Auxiliary functions of the PsbO, PsbP and PsbQ proteins of higher plant photosystem II: a critical analysis. J Photochem Photobiol B: Biol 104:165–178

    Article  CAS  Google Scholar 

  • Bricker TM, Young A, Frankel LK, Putnam-Evans C (2002) Introduction of the 305Arg → 305Ser mutation in the large extrinsic loop E of the CP43 protein of Synechocystis sp. PCC 6803 leads to the loss of cytochrome c550 binding to photosystem II. Biochim Biophys Acta 1556:92–96

    Article  CAS  PubMed  Google Scholar 

  • Bricker TM, Roose JL, Fagerlund RD, Frankel LK, Eaton-Rye JJ (2012) The extrinsic proteins of photosystem II. Biochim Biophys Acta 1817:121–142

    Article  CAS  PubMed  Google Scholar 

  • Bricker TM, Roose JL, Zhang P, Frankel LK (2013) The PsbP family of proteins. Photosynth Res 116:235–250

    Article  CAS  PubMed  Google Scholar 

  • Bricker TM, Mummadisetti MP, Frankel LK (2015) Recent advances in the use of mass spectrometry to examine structure/function relationships in photosystem II. J Photochem Photobiol B Biol 152:227–246

    Article  CAS  Google Scholar 

  • Burch BD, Bricker TM, Putnam-Evans C (2012) Mutations in the CP43 protein of photosystem II affect PSII function and cytochrome c 550 binding. In: Najafpour MM (ed) Atrificial photosynthesis. InTech, Rijeka, pp 53–78

    Google Scholar 

  • Calderone V, Trabucco M, Vujicic A, Battistutta R, Giacometti GM, Andreucci F, Barbato R, Zanotti G (2003) Crystal structure of the PsbQ protein of photosystem II from higher plants. EMBO Rep 4:900–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao P, Xie Y, Li M, Pan X, Zhang H, Zhao X, Su X, Cheng T, Chang W (2015) Crystal structure analysis of extrinsic PsbP protein of photosystem II reveals a manganese-induced conformational change. Mol Plant 8:664–666

    Article  CAS  PubMed  Google Scholar 

  • Cardona T, Sedoud A, Cox N, Rutherford AW (2012) Charge separation in photosystem II: a comparitive and evolutionary approach. Biochim Biophys Acta 1817:26–43

    Article  CAS  PubMed  Google Scholar 

  • Cole J, Boska M, Blough NV, Sauer K (1986) Reversible and irreversible effects of alkaline pH on Photosystem II electron-transfer reactions. Biochim Biophys Acta BBA Bioenerg 848:41–47

    Article  CAS  Google Scholar 

  • Cormann KU, Bartsch M, Rogner M, Nowaczyk MM (2014) Localization of the CyanoP binding site on photosystem II by surface plasmon resonance spectroscopy. Front Plant Sci 5:595

  • Duchoslav M, Fischer L (2015) Parallel subfunctionalisation of PsbO protein isoforms in angiosperms revealed by phylogenetic analysis and mapping of sequence variability onto protein structure. BMC Plant Biol 15:133

    Article  PubMed  PubMed Central  Google Scholar 

  • Eaton-Rye JJ, Shand JA, Nicoll WS (2003) pH-dependent photoautotrophic growth of specific photosystem II mutants lacking lumenal extrinsic polypeptides in Synechocystis sp. PCC 6803. FEBS Lett 543:148–153

  • Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen M-Y, Pieper U, Sali A (2007) Comparative protein structure modeling using MODELLER. Curr Protoc Prot Sci 50:2.9.1–2.9.31

    Article  Google Scholar 

  • Fagerlund RD, Eaton-Rye JJ (2011) The lipoproteins of cyanobacterial photosystem II. J Photochem Photobiol B 104:191–203

    Article  CAS  PubMed  Google Scholar 

  • Frankel LK, Cruz JA, Bricker TM (1999) Carboxylate groups on the manganese-stabilizing protein are required for its efficient binding to photosystem II. Biochemistry 38:14271–14278

    Article  CAS  PubMed  Google Scholar 

  • Galetskiy D, Lohscheider JN, Kononikhin AS, Popov IA, Nikolaev EN, Adamska I (2011) Mass spectrometric characterization of photooxidative protein modifications in Arabidopsis thaliana thylakoid membranes. Rapid Commun Mass Spectrom 25:184–190

    Article  CAS  PubMed  Google Scholar 

  • Guerrero F, Sedoud A, Kirilovsky D, Rutherford AW, Ortega JM, Roncel M (2011) A high redox potential form of cytochrome c550 in photosystem II from Thermosynechococcus elongatus. J Biol Chem 286:5985–5994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ido K, Ifuku K, Yamamoto Y, Ishihara S, Murakami A, Takabe K, Miyake C, Sato F (2009) Knockdown of PsbP protein does not prevent assembly of the dimeric PSII core complex but impairs accumulation of Photosystem II supercomplexes in tobacco. Biochim Biophys Acta 1787:873–881

    Article  CAS  PubMed  Google Scholar 

  • Ido K, Kakiuchi S, Uno C, Nishimura T, Fukao Y, Noguchi T, Sato F, Ifuku K (2012) The conserved His-144 in the PsbP protein is important for the interaction between the PsbP N-terminus and the Cyt b 559 subunit of Photosystem II. J Biol Chem 287:26377–26387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ido K, Nield J, Fukao Y, Nishimura T, Sato F, Ifuku K (2014) Cross-linking evidence for multiple interactions of the PsbP and PsbQ proteins in a higher plant photosystem II supercomplex. J Biol Chem 289:20150–20157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ifuku K (2014) The PsbP and PsbQ family proteins in the photosynthetic machinery of chloroplasts. Plant Physiol Biochem 81:108–114

    Article  CAS  PubMed  Google Scholar 

  • Ifuku K, Sato F (2001) Importance of the N-terminal sequence of the extrinsic 23 kDa polypeptide in photosystem II in ion retention in oxygen evolution. Biochim Biophys Acta 1546:196–204

    Article  CAS  PubMed  Google Scholar 

  • Ifuku K, Sato F (2002) A truncated mutant of the extrinsic 23-kDa protein that absolutely requires the extrinsic 17-kDa protein for Ca2+ retention in photosystem II. Plant Cell Physiol 43:1244–1249

    Article  CAS  PubMed  Google Scholar 

  • Ifuku K, Nakatsu T, Kato H, Sato F (2004) Crystal structure of the PsbP protein of photosystem II from Nicotiana tabacum. EMBO Rep 5:362–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ifuku K, Yamamoto J, Ono T-A, Ishihara S, Sato F (2005) PsbP protein, but not PsbQ protein, is essential for the regulation and stabilization of photosystem II in higher plants. Plant Physiol 139:1175–1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ifuku K, Ishihara S, Shimamoto R, Ido K, Sato F (2008) Structure, function, and evolution of the PsbP protein family in higher plants. Photosyn Res 98:427–437

    Article  CAS  PubMed  Google Scholar 

  • Inoue-Kashino N, Kashino Y, Satoh K, Terashima I, Pakrasi HB (2005) PsbU provides a stable architecture for the oxygen-evolving system in cyanobacterial photosystem II. Biochemistry 44:12214–12228

    Article  CAS  PubMed  Google Scholar 

  • Ischiropoulos H (2009) Protein tyrosine nitration—an update. Arch Biochem Biophys 484:117–121

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa Y, Schroder WP, Funk C (2005) Functional analysis of the PsbP-like protein (sll1418) in Synechocystis sp. PCC 6803. Photosynth Res 84:257–262

    Article  CAS  PubMed  Google Scholar 

  • Jackson SA, Eaton-Rye JJ (2015) Characterization of a Synechocystis sp. PCC 6803 double mutant lacking the CyanoP and Ycf48 proteins of Photosystem II. Photosynth Res 124:217–229

    Article  CAS  PubMed  Google Scholar 

  • Jackson SA, Fagerlund RD, Wilbanks SM, Eaton-Rye JJ (2010) Crystal structure of PsbQ from Synechocystis sp. PCC 6803 at 1.8 Å: implications for binding and function in cyanobacterial photosystem II. Biochemistry 49:2765–2767

    Article  CAS  PubMed  Google Scholar 

  • Jackson SA, Hinds MG, Eaton-Rye JJ (2012) Solution structure of CyanoP from Synechocystis sp. PCC 6803: new insights on the structural basis for functional specialization amongst PsbP family proteins. Biochim Biophys Acta 1817:1331–1338

    Article  CAS  PubMed  Google Scholar 

  • Jackson SA, Hervey JR, Dale AJ, Eaton-Rye JJ (2014) Removal of both Ycf48 and Psb27 in Synechocystis sp. PCC 6803 disrupts photosystem II assembly and alters Q A oxidation in the mature complex. FEBS Lett 588:3751–3760

    Article  CAS  PubMed  Google Scholar 

  • Kakiuchi S, Uno C, Ido K, Nishimura T, Noguchi T, Ifuku K, Sato F (2012) The PsbQ protein stabilizes the functional binding of the PsbP protein to photosystem II in higher plants. Biochim Biophys Acta 1817:1346–1351

    Article  CAS  PubMed  Google Scholar 

  • Komenda J, Nickelsen J, Tichy M, Prasil O, Eichacker LA, Nixon PJ (2008) The cyanobacterial homologue of HCF136/YCF48 is a component of an early photosystem II assembly complex and is important for both the efficient assembly and repair of photosystem II in Synechocystis sp. PCC 6803. J Biol Chem 283:22390–22399

    Article  CAS  PubMed  Google Scholar 

  • Kopecky V, Kohoutova J, Lapkouski M, Hofbauerova K, Sovova Z, Ettrichova O, González-Pérez S, Dulebo A, Kaftan D, Smatanova IK, Revuelta JL, Arellano JB, Carey J, Ettrich R (2012) Raman spectroscopy adds complementary detail to the high-resolution X-ray crystal structure of photosynthetic PsbP from Spinacia oleracea. PLoS One 7:e46694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuwabara T, Murata N (1982) Inactivation of photosynthetic oxygen evolution and concomitant release of three polypeptides in the photosystem II particles of spinach chloroplasts. Plant Cell Physiol 23:533–539

    CAS  Google Scholar 

  • Leuschner C, Bricker TM (1996) Interaction of the 33 kDa extrinsic protein with photosystem II: rebinding of the 33 kDa extrinsic protein to photosystem II membranes which contain four, two, or zero manganese per photosystem II reaction center. Biochem 35:4551–4557

  • Liu H, Zhang H, Weisz DA, Vidavsky I, Gross ML, Pakrasi HB (2014) MS-based cross-linking analysis reveals the location of the PsbQ protein in cyanobacterial photosystem II. Proc Natl Acad Sci USA 111:4638–4643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Weisz DA, Pakrasi HB (2015) Multiple copies of the PsbQ protein in a cyanobacterial photosystem II assembly intermediate complex. Photosynth Res 126:375–383

    Article  CAS  PubMed  Google Scholar 

  • Ljungberg U, Akerlund H-E, Larsson C, Andersson B (1984) Identification of polypeptides associated with the 23 and 33 kDa proteins of photosynthetic oxygen evolution. Biochim Biophys Acta 767:145–152

    Article  CAS  Google Scholar 

  • Lorch S, Capponi S, Pieront F, Bondar A-N (2015) Dynamic carboxylate/water networks on the surface of the PsbO Subunit of photosystem II. J Phys Chem B 119:12173–12181

    Article  Google Scholar 

  • Mayfield SP, Rahire M, Frank G, Zuber H, Rochaix JD (1987) Expression of the nuclear gene encoding oxygen-evolving enhancer protein 2 is required for high levels of photosynthetic oxygen evolution in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 84:749–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michoux F, Takasaka K, Boehm M, Nixon PJ, Murray JW (2010) Structure of CyanoP at 2.8 Å: implications for the evolution and function of the PsbP subunit of Photosystem II. Biochemistry 49:7411–7413

    Article  CAS  PubMed  Google Scholar 

  • Michoux F, Boehm M, Bialek W, Takasaka K, Maghlaoui K, Barber J, Murray JW, Nixon PJ (2014) Crystal structure of CyanoQ from the thermophilic cyanobacterium Thermosynechococcus elongatus and detection in isolated photosystem II complexes. Photosynth Res 122:57–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyao M, Murata N (1985) The Cl effect on photosynthetic oxygen evolution: interaction of Cl with 18-kDa, 24-kDa and 33-kDa proteins. FEBS Lett 180:303–308

    Article  CAS  Google Scholar 

  • Mummadisetti MP, Frankel LK, Bellamy H, Sallans L, Goettert JS, Brylinski M, Limbach PA, Bricker TM (2014) Use of protein cross-linking and radiolytic footprinting to elucidate PsbP and PsbQ interactions within higher plant Photosystem II. Proc Natl Acad Sci USA 111:16178–16183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagao R, Tomo T, Noguchi T (2015) Effects of extrinsic proteins on the protein conformation of the oxygen-evolving center in cyanobacterial photosystem II as revealed by Fourier transform infrared spectroscopy. Biochemistry 54:2022–2031

    Article  CAS  PubMed  Google Scholar 

  • Nelson N, Yocum CF (2006) Structure and function of photosystems I and II. Ann Rev Plant Biol 57:521–565

    Article  CAS  Google Scholar 

  • Nishimura T, Uno C, Ido K, Nagao R, Noguchi T, Sato F, Ifuku K (2014) Identification of the basic amino acid residues on the PsbP protein involved in the electrostatic interaction with photosystem II. Biochim Biophys Acta 1837:1447–1453

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama Y, Los DA, Murata N (1999) PsbU, a protein associated with photosystem II, is required for the acquisition of cellular thermotolerance in Synechococcus species PCC 7002. Plant Physiol 120:301–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Offenbacher AR, Polander BC, Barry BA (2013) An intrinsically disordered photosystem II subunit, PsbO, provides a structural template and a sensor of the hydrogen-bonding network in photosynthetic water oxidation. J Biol Chem 288:29056–29068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peers G, Truong TB, Ostendorf E, Busch A, Elrad D, Grossman AR, Hippler M, Niyogi KK (2009) An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 462:518–521

    Article  CAS  PubMed  Google Scholar 

  • Pigolev AV, Klimov VV (2015) The green alga Chlamydomonas reinhardtii as a tool for in vivo study of site-directed mutations in PsbO protein of photosystem II. Biochemistry 80:785–797 (Moscow)

    Google Scholar 

  • Pigolev AV, Zharmukhamedov SK, Klimov VV (2009) The PsbO mutant of Chlamydomonas reinhardtii is capable of assembling stable, photochemically active reaction center of photosystem II. Biol Membr 26:31–40

    CAS  Google Scholar 

  • Pigolev AV, Timoshevsky DS, Klimov VV (2012) Effect of K223E and K226E amino acid substitutions in PsbO protein of photosystem 2 on stability and functional activity of the water-oxidizing complex in Chlamydomonas reinhardtii. Biochemistry 77:71–77 (Moscow)

    CAS  PubMed  Google Scholar 

  • Rathner P, Mueller N, Wimmer R, Chandra K (2015) Solution NMR and molecular dynamics reveal a persistent alpha helix within the dynamic region of PsbQ from photosystem II of higher plants. Proteins 83:1677–1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roncel M, Kirilovsky D, Guerrero F, Serrano A, Ortega JM (2012) Photosynthetic cytochrome c550. Biochim Biophys Acta 1817:1152–1163

    Article  CAS  PubMed  Google Scholar 

  • Roose J, Wegener K, Pakrasi H (2007a) The extrinsic proteins of photosystem II. Photosyn Res 92:369–387

    Article  CAS  PubMed  Google Scholar 

  • Roose JL, Kashino Y, Pakrasi HB (2007b) The PsbQ protein defines cyanobacterial Photosystem II complexes with highest activity and stability. Proc Natl Acad Sci USA 104:2548–2553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roose JR, Frankel LK, Bricker TM (2010) Documentation of significant electron transport defects on the reducing side of photosystem II upon removal of the PsbP and PsbQ extrinsic proteins. Biochemistry 49:36–41

    Article  CAS  PubMed  Google Scholar 

  • Schlodder E, Meyer B (1987) pH dependence of oxygen evolution and reduction kinetics of photooxidized chlorophyll aII (P-680) in photosystem II particles from Synechococcus sp. Biochim Biophys Acta BBA Bioenerg 890:23–31

    Article  CAS  Google Scholar 

  • Shen JR, Ikeuchi M, Inoue Y (1997) Analysis of the psbU gene encoding the 12-kDa extrinsic protein of photosystem II and studies on its role by deletion mutagenesis in Synechocystis sp. PCC 6803. J Biol Chem 272:17821–17826

    Article  CAS  PubMed  Google Scholar 

  • Shutova T, Klimov VV, Andersson B, Samuelsson G (2007) A cluster of carboxylic groups in PsbO protein is involved in proton transfer from the water oxidizing complex of photosystem II. Biochim Biophys Acta 1767:434–440

    Article  CAS  PubMed  Google Scholar 

  • Summerfield TC, Crawford TS, Young RD, Chua JP, Macdonald RL, Sherman LA, Eaton-Rye JJ (2013) Environmental pH affects photoautotrophic growth of Synechocystis sp. PCC 6803 strains carrying mutations in the lumenal proteins of PSII. Plant Cell Physiol 54:859–874

  • Summerfield TC, Winter RT, Eaton-Rye JJ (2005) Investigation of a requirement for the PsbP-like protein in Synechocystis sp. PCC 6803. Photosynth Res 84:263–268

    Article  CAS  PubMed  Google Scholar 

  • Suorsa M, Aro E-M (2007) Expression, assembly, and auxiliary functions of photosystem II oxygen-evolving proteins in higher plants. Photosynth Res 93:89–100

    Article  CAS  PubMed  Google Scholar 

  • Sveshnikov D, Funk C, Schroder WP (2007) The PsbP-like protein (sll1418) of Synechocystis sp. PCC 6803 stabilises the donor side of photosystem II. Photosynth Res 93:101–109

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Furuhashi T, Ishikawa N, Horiguchi G, Sakamoto A, Tsukaya H, Morikawa H (2014) Nitrogen dioxide regulates organ growth by controlling cell proliferation and enlargement in Arabidopsis. New Phytol 201:1304–1315

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Shigeto J, Sakamoto A, Izumi S, Asada K, Morikawa H (2015) Dual selective nitration in Arabidopsis: almost exclusive nitration of PsbO and PsbP, and highly susceptible nitration of four non PS II proteins, including peroxidoxin II E. Electrophoresis 36:2569–2578

    Article  CAS  PubMed  Google Scholar 

  • Thornton LE, Ohkawa H, Roose JL, Kashino Y, Keren N, Pakrasi HB (2004) Homologs of plant PsbP and PsbQ proteins are necessary for regulation of photosystem II activity in the cyanobacterium Synechocystis 6803. Plant Cell 16:2164–2175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tohri A, Dohmae N, Suzuki T, Ohta H, Inoue Y, Enami I (2004) Identification of domains on the extrinsic 23 kDa protein possibly involved in electrostatic interaction with the extrinsic 33 kDa protein in spinach photosystem II. Eur J Biochem 271:962–971

    Article  CAS  PubMed  Google Scholar 

  • Tokutsu R, Minagawa J (2013) Energy-dissipative supercomplex of photosystem II associated with LHCSR3 in Chlamydomas reinhardtii. Proc Natl Acad Sci USA 110:10016–10021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomita M, Ifuku K, Sato F, Noguchi T (2009) FTIR evidence that the PsbP extrinsic protein induces protein conformational changes around the oxygen-evolving Mn cluster in photosystem II. Biochemistry 48:6318–6325

    Article  CAS  PubMed  Google Scholar 

  • Trachootham D, Lu W, Ogasawara MA, Rivera-Del Valle N, Huang P (2015) Redox regulation of cell survival. Antioxid Redox Signal 10:1343–1347

    Article  Google Scholar 

  • Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 A. Nature 473:55–60

    Article  CAS  PubMed  Google Scholar 

  • Uno C, Nagao R, Suzuki H, Tomo T, Noguchi T (2013) Structural coupling of extrinsic proteins with the oxygen-evolving center in red algal photosystem II as revealed by light-induced FTIR difference spectroscopy. Biochemistry 52:5705–5707

    Article  CAS  PubMed  Google Scholar 

  • Vassiliev S, Zaraiskaya T, Bruce D (2012) Exploring the energetics of water permeation in photosystem II by multiple steered molecular dynamics simulations. Biochim Biophys Acta 1817:1671–1678

    Article  CAS  PubMed  Google Scholar 

  • Vassiliev S, Zaraiskaya T, Bruce D (2013) Molecular dynamics simulations reveal highly permeable oxygen exit channels shared with water uptake channels in photosystem II. Biochim Biophys Acta 1827:1148–1155

    Article  CAS  PubMed  Google Scholar 

  • Veerman J, Bentley FK, Eaton-Rye JJ, Mullineaux CW, Vasil’ev S, Bruce D (2005) The PsbU subunit of photosystem II stabilizes energy transfer and primary photochemistry in the phycobilisome-photosystem II assembly of Synechocystis sp. PCC 6803. Biochemistry 44:16939–16948

    Article  CAS  PubMed  Google Scholar 

  • Vinyard DJ, Ananyev GM, Dismukes GC (2013) Photosystem II: the reaction center of oxygenic photosynthesis. Annu Rev Biochem 82:577–606

    Article  CAS  PubMed  Google Scholar 

  • Webber A, Packman LC, Gray JC (1989) A 10 kDa polypeptide associated with the oxygen-evolving complex of photosystem II has a putative C-terminal noncleavable thylakoid transfer domain. FEBS Lett 242:435–438

    Article  CAS  PubMed  Google Scholar 

  • Xue H, Tokutsu R, Bergner SV, Scholz M, Minagawa J, Hippler M (2015) Photosysten II subunit PsbR is required for efficient binding of light-harvesting complex stress-related protein3 to photosystem II-light-harvesting supercomplexes in Chlamydomonas reinhardtii. Plant Physiol 167:1566–1578

    Article  CAS  PubMed  Google Scholar 

  • Yano J, Yachandra V (2014) Mn4Ca cluster in photosynthesis: where and how water is oxidized to dioxygen. Chem Rev 114:4175–4205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi X, Hargett SR, Frankel LK, Bricker TM (2006) The PsbQ protein is required in Arabidopsis for photosystem II assembly/stability and photoautotrophy under low light conditions. J Biol Chem 281:26260–26267

    Article  CAS  PubMed  Google Scholar 

  • Yi X, Liu H, Hargett SR, Frankel LK, Bricker TM (2007) The PsbP protein is required for photosystem II complex assembly/stability and photoautotrophy in Arabidopsis thaliana. J Biol Chem 282:24833–24841

    Article  CAS  PubMed  Google Scholar 

  • Yi X, Hargett SR, Frankel LK, Bricker TM (2009) The PsbP protein, but not the PsbQ protein, is required for normal thylakoid membrane architecture in Arabidopsis thaliana. FEBS Lett 583:2142–2147

    Article  CAS  PubMed  Google Scholar 

  • Young A, McChargue M, Frankel LK, Bricker TM, Putnam-Evans C (2002) Alterations of the oxygen-evolving apparatus induced by a 305Arg → 305Ser mutation in the CP43 protein of photosystem II from Synechocystis sp. PCC 6803 under chloride-limiting conditions. Biochemistry 41:15747–15753

    Article  CAS  PubMed  Google Scholar 

  • Zhang YBB (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinform 9:40–48

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy through Grant DE-FG02-98ER20310 to T.B. and L.F..

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry M. Bricker.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roose, J.L., Frankel, L.K., Mummadisetti, M.P. et al. The extrinsic proteins of photosystem II: update. Planta 243, 889–908 (2016). https://doi.org/10.1007/s00425-015-2462-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2462-6

Keywords

Navigation