Skip to main content
Log in

Diversity in photosynthetic electron transport under [CO2]-limitation: the cyanobacterium Synechococcus sp. PCC 7002 and green alga Chlamydomonas reinhardtii drive an O2-dependent alternative electron flow and non-photochemical quenching of chlorophyll fluorescence during CO2-limited photosynthesis

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Some cyanobacteria, but not all, experience an induction of alternative electron flow (AEF) during CO2-limited photosynthesis. For example, Synechocystis sp. PCC 6803 (S. 6803) exhibits AEF, but Synechococcus elongatus sp. PCC 7942 does not. This difference is due to the presence of flavodiiron 2 and 4 proteins (FLV2/4) in S. 6803, which catalyze electron donation to O2. In this study, we observed a low-[CO2] induced AEF in the marine cyanobacterium Synechococcus sp. PCC 7002 that lacks FLV2/4. The AEF shows high affinity for O2, compared with AEF mediated by FLV2/4 in S. 6803, and can proceed under extreme low [O2] (about a few µM O2). Further, the transition from CO2-saturated to CO2-limited photosynthesis leads a preferential excitation of PSI to PSII and increased non-photochemical quenching of chlorophyll fluorescence. We found that the model green alga Chlamydomonas reinhardtii also has an O2-dependent AEF showing the same affinity for O2 as that in S. 7002. These data represent the diverse molecular mechanisms to drive AEF in cyanobacteria and green algae. In this paper, we further discuss the diversity, the evolution, and the physiological function of strategy to CO2-limitation in cyanobacterial and green algal photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AEF:

Alternative electron flow

FLV:

Flavodiiron protein

PET:

Photosynthetic electron transport

NPQ:

Non-photochemical quenching

References

  • Allahverdiyeva Y, Mustila H, Ermakova M, Bersanini L, Richaud P, Ajlani G, Battchikova N, Cournac L, Aro EM (2013) Flavodiiron proteins Flv1 and Flv3 enable cyanobacterial growth and photosynthesis under fluctuating light. Proc Natl Acad Sci USA 110:4111–4116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Appel J, Phunpruch S, Steinmüller K, Schulz R (2000) The bidirectional hydrogenase of Synechocystis sp. PCC 6803 works as an electron valve during photosynthesis. Microbiology 173:333–378

    CAS  Google Scholar 

  • Arnon DI, Allen MB, Whatley FR (1954) Photosynthesis by isolated chloroplasts. Nature 1174:394396

    Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  PubMed  Google Scholar 

  • Beardall J, Quigg A, Raven JA (2003) Oxygen consumption: photorespiration and chlororespiration. In: Larkum WD, Douglas SE, Raven JA (eds) Photosynthesis in algae. Kluwer Academic Publishers, Dordrecht, pp 157–181

    Chapter  Google Scholar 

  • Bernát G, Rögner M (2011) Center of the cyanobacterial electron transport network: the cytochrome b 6 f complex. In: Peschek G, Obinger C, Renger G (eds) Bioenergetic processes of cyanobacteria. Springer, Dordrecht, pp 573–606

    Chapter  Google Scholar 

  • Birmingham BC, Coleman JR, Colman B (1982) Measurement of photorespiration in algae. Plant Physiol 69:259–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell D, Hurry V, Clarke AK, Gustafsson P, Öquist G (1998) Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol Mol Biol Rev 62:667–683

    CAS  PubMed  PubMed Central  Google Scholar 

  • Demmig-Adams B, Garab G, Adams III, Govindjee W (eds) (2014) Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria. Springer, Dordrecht

    Google Scholar 

  • Dvořák P, Casamatta DA, Poulíčková A, Hašler P, Ondřej V, Sanges R (2014) Synechococcus: 3 billion years of global dominance. Mol Ecol 23:5538–5551

    Article  PubMed  Google Scholar 

  • Eisenhut M, Ruth W, Haimovich M, Bauwe H, Kaplan A, Hagemann M (2008) The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endosymbiontically to plants. Proc Natl Acad Sci USA 105:17199–17204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falkowski PG, Fujita Y, Ley A, Mauzerall D (1986) Evidence for cyclic electron flow around photosystem II in Chlorella pyrenoidosa. Plant Physiol 81:310–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flores E, Frías JE, Rubio LM, Herrero A (2005) Photosynthetic nitrate assimilation in cyanobacteria. Photosynth Res 83:117–133

    Article  CAS  PubMed  Google Scholar 

  • Fujimori T, Hihara Y, Sonoike K (2005) PsaK2 subunit in photosystem I is involved in state transition under high light condition in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 280:22191–22197

    Article  CAS  PubMed  Google Scholar 

  • Fujisawa T, Okamoto S, Katayama T, Nakao M, Yoshimura H, Kajiya-Kanegae H, Yamamoto S, Yano C, Yanaka Y, Maita H, Kaneko T, Tabata S, Nakamura Y (2014) CyanoBase and RhizoBase: databases of manually curated annotations for cyanobacterial and rhizobial genomes. Nucl Acids Res 42:666–670

    Article  Google Scholar 

  • Govindjee Björn LO (2015) Dissecting oxygenic photosynthesis: The evolution of the “Z”-scheme for thylakoid reactions. In: Itoh S, Mohanty P, Guruprasad KN (eds) Photosynthesis: overviews on recent progress and future perspective. Publishers, New Delhi, I.K, pp 1–27

    Google Scholar 

  • Govindjee Amesz J, Fork DC (eds) (1986) Light emission by plants and bacteria. Academic Press, NY

    Google Scholar 

  • Grimme LH, Boardman NK (1972) Photochemical activities of a particle fraction P1 obtained from the green alga Chlorella fuska. Biochem Biophys Res Commun 49:1617–1623

    Article  CAS  PubMed  Google Scholar 

  • Hayashi R, Shimakawa G, Shaku K, Shimizu S, Akimoto S, Yamamoto H, Amako K, Sugimoto T, Tamoi M, Makino A, Miyake C (2014) O2-dependent large electron flow functioned as an electron sink, replacing the steady-state electron flux in photosynthesis in the cyanobacterium Synechocystis sp. PCC 6803, but not in the cyanobacterium Synechococcus sp. PCC 7942. Biosci Biotechnol Biochem 78:384–393

    Article  CAS  PubMed  Google Scholar 

  • Helman Y, Tchernov D, Reinhold L, Shibata M, Ogawa T, Schwarz R, Ohad I, Kaplan A (2003) Genes encoding A-type flavoproteins are essential for photoreduction of O2 in cyanobacteria. Curr Biol 13:230–235

    Article  CAS  PubMed  Google Scholar 

  • Helman Y, Barkan E, Eisenstadt D, Luz B, Kaplan A (2005) Fractionation of the three stable oxygen isotopes by oxygen-producing and oxygen-consuming reactions in photosynthetic organisms. Plant Physiol 138:2292–2298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hihara Y, Kamei A, Kanehisa M, Kaplan A, Ikeuchi M (2001) DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. Plant Cell 13:793–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ihnken S, Kromkamp JC, Beardall J, Silsbe GM (2013) State-transitions facilitate robust quantum yields and cause an over-estimation of electron transport in Dunaliella tertiolecta cells held at the CO2 compensation point and re-supplied with DIC. Photosynth Res 119:257–272

    Article  PubMed  Google Scholar 

  • Iwai M, Kato N, Minagawa J (2007) Distinct physiological responses to a high light and low CO2 environment revealed by fluorescence quenching in photoautotrophically grown Chlamydomonas reinhardtii. Photosynth Res 94:307–314

    Article  CAS  PubMed  Google Scholar 

  • Jordan DB, Ogren WL (1981) Species variation in the specificity of ribulose bisphosphate carboxylase/oxygenase. Nature 291:513–515

    Article  CAS  Google Scholar 

  • Klughammer C, Schreiber U (1994) An improved method, using saturating light pulses, for the determination of photosystem I quantum yield via P700+-absorbance changes at 830 nm. Planta 192:261–268

    Article  CAS  Google Scholar 

  • Klughammer C, Schreiber U (2008) Saturation pulse method for assessment of energy conversion in PSI. PAM Appl Notes 1:11–14

    Google Scholar 

  • Kodru S, Malavath T, Devadasu E, Nellaepalli S, Stirbet A, Subramanyam R, Govindjee (2015) The slow S to M rise of chlorophyll a fluorescence reflects transition from state 2 to state 1 in the green alga Chlamydomonas reinhardtii. Photosynth Res 125:219–231

    Article  CAS  PubMed  Google Scholar 

  • Krieger-Liszkay A (2005) Singlet oxygen production in photosynthesis. J Exp Bot 56:337–346

    Article  CAS  PubMed  Google Scholar 

  • Kusama Y, Inoue S, Jimbo H, Takaichi S, Sonoike K, Hihara Y, Nishiyama Y (2015) Zeaxanthin and echinenone protect the repair of photosystem II from inhibition by singlet oxygen in Synechocystis sp. PCC 6803. Plant Cell Physiol 56:906–916

    Article  CAS  PubMed  Google Scholar 

  • Ley AC, Butler WL (1980) Energy distribution in the photochemical apparatus of Porphyridium cruentum in state I and state II. Biochim Biophys Acta 592:349–363

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK, Buchanan BB, Douce R, Govindjee (2015) Andrew A. Benson, 1917–2015. Photosynth Res 124:131–135

    Article  CAS  PubMed  Google Scholar 

  • Marek LF, Spalding MH (1991) Changes in photorespiratory enzyme activity in response to limiting CO2 in Chlamydomonas reinhardtii. Plant Physiol 97:420–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McConnell MD, Koop R, Vasil’ev S, Bruce S (2002) Regulation of the distribution of chlorophyll and phycobilin-absorbed excitation energy in cyanobacteria. A structure-based model for the light state transition. Plant Physiol 130:1201–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehler AH (1951) Studies on reactivities of illuminated chloroplasts. I. Mechanism of the reduction of oxygen and other Hill reagents. Arch Biochem Biophys 33:65–77

    Article  CAS  PubMed  Google Scholar 

  • Miller AG, Espie GS, Bruce D (1996) Characterization of the non-photochemical quenching of chlorophyll fluorescence that occurs during the active accumulation of inorganic carbon in the cyanobacterium Synechococcus PCC 7942. Photosynth Res 49:251–262

    Article  CAS  PubMed  Google Scholar 

  • Miyake C (2010) Alternative electron flows (water-water cycle and cyclic electron flow around PSI) in photosynthesis: molecular mechanisms and physiological functions. Plant Cell Physiol 51:1951–1963

    Article  CAS  PubMed  Google Scholar 

  • Miyake C, Asada K (2003) The water-water cycle in algae. In: Larkum WD, Douglas SE, Raven JA (eds) Photosynthesis in algae. Kluwer Academic Publishers, Dordrecht, pp 183–204

    Chapter  Google Scholar 

  • Miyake C, Yokota A (2001) Cyclic flow of electrons within PSII in thylakoid membranes. Plant Cell Physiol 42:508–515

    Article  CAS  PubMed  Google Scholar 

  • Miyake C, Miyata M, Shinzaki Y, Tomizawa K (2005) CO2 response of cyclic electron flow around PSI (CEF-PSI) in tobacco leaves—relative electron fluxes through PSI and PSII determine the magnitude of non-photochemical quenching (NPQ) of Chl fluorescence. Plant Cell Physiol 46:629–637

    Article  CAS  PubMed  Google Scholar 

  • Moroney JV, Wilson BJ, Tolbert NE (1986) Glycolate metabolism and excretion by Chlamydomonas reinhardtii. Plant Physiol 82:821–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murata N (1969) Control of excitation transfer in photosynthesis. I. Light-induced change of chlorophyll a fluorescence in Porphyridium cruentum. Biochim Biophys Acta 172:242–251

    Article  CAS  PubMed  Google Scholar 

  • Murchie EH, Lawson T (2013) Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot 64:3983–3998

    Article  CAS  PubMed  Google Scholar 

  • Najafpour M, Moghaddam AN, Shen J-R, Govindjee (2013) Water oxidation and water oxidizing complex in cyanobacteria. In: Srivastava A et al (eds) Stress biology of cyanobacteria. Taylor & Francis, UK, pp 41–60

    Chapter  Google Scholar 

  • Niyogi KK, Truong TB (2013) Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Curr Opin Plant Biol 16:307–314

    Article  CAS  PubMed  Google Scholar 

  • Papageorgiou GC, Govindjee (eds) (2004) Chlorophyll a fluorescence: a signature of photosynthesis. Advances in Photosynthesis and Respiration, Springer, Dordrecht

    Google Scholar 

  • Papageorgiou GC, Govindjee (2011) Photosystem II fluorescence: slow changes-Scaling from the past. J Photochem Photobiol B 104:258–270

    Article  CAS  PubMed  Google Scholar 

  • Papageorgiou GC, Tsimilli-Michael M, Stamatakis K (2007) The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint. Photosynth Res 94:275–290

    Article  CAS  PubMed  Google Scholar 

  • Roach T, Na CS, Krieger-Liszkay A (2015) High light-induced hydrogen peroxide production in Chlamydomonas reinhardtii is increased by high CO2 availability. Plant J 81:759–766

    Article  CAS  PubMed  Google Scholar 

  • Satoh S, Mimuro M, Tanaka A (2013) Construction of a phylogenetic tree of photosynthetic prokaryotes based on average similarities of whole genome sequences. PLoS One 8:e70290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62

    Article  CAS  PubMed  Google Scholar 

  • Schuurmans RM, van Alphen P, Schuurmans JM, Matthijs HCP, Hellingwerf KJ (2015) Comparison of the photosynthetic yield of cyanobacteria and green algae: different methods give different answers. PLoS One 10:e0139061

    Article  PubMed  PubMed Central  Google Scholar 

  • Sejima T, Takagi D, Fukayama H, Makino A, Miyake C (2014) Repetitive short-pulse light mainly inactivates photosystem I in sunflower leaves. Plant Cell Physiol 55:1184–1193

    Article  CAS  PubMed  Google Scholar 

  • Sejima T, Hanawa H, Shimakawa G, Takagi D, Suzuki Y, Fukayama H, Makino A, Miyake C (2015) Post-illumination transient O2-uptake is driven by photorespiration in tobacco leaves. Physiol Plant 156:227–238

    Article  Google Scholar 

  • Shaku K, Shimakawa G, Hashiguchi M, Miyake C (2015) Reduction-induced suppression of electron flow (RISE) in the photosynthetic electron transport system of Synechococcus elongatus PCC 7942. Plant Cell Physiol. doi:10.1093/pcp/pcv198

    PubMed  Google Scholar 

  • Shikanai T (2016) Regulatory network of proton motive force: contribution of cyclic electron transport around photosystem I. Photosynth Res. doi:10.1007/s11120-016-0227-0

    PubMed  Google Scholar 

  • Shimakawa G, Shaku K, Nishi A, Hayashi R, Yamamoto H, Sakamoto K, Makino A, Miyake C (2015) FLAVODIIRON2 and FLAVODIIRON4 proteins mediate and oxygen-dependent alternative electron flow in Synechocystis sp. PCC 6803 under CO2-limited conditions. Plant Physiol 167:472–480

    Article  CAS  PubMed  Google Scholar 

  • Stevens SE, Porter RD (1980) Transformation in Agmenellum quadruplicatum. Proc Natl Acad Sci USA 77:6052–6056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sueoka N (1960) Mitotic replication of deoxyribonucleic acid in Chlamydomonas reinhardtii. Planta 228:1055–1066

    Google Scholar 

  • Sültemeyer DF, Miller AG, Espie GS, Fock HP, Canvin DT (1989) Active CO2 transport by the green alga Chlamydomonas reinhardtii. Plant Physiol 89:1213–1219

    Article  PubMed  PubMed Central  Google Scholar 

  • Turner S, Pryer KM, Miao VPW, Palmer JD (1999) Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol 46:327–338

    Article  CAS  PubMed  Google Scholar 

  • van Kooten O, Snel JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25:147–150

    Article  PubMed  Google Scholar 

  • van Thor JJ, Mullineaux CW, Matthijs HCP, Hellingwerf KJ (1998) Light harvesting and state transitions in cyanobacteria. Bot Acta 111:430–443

    Article  Google Scholar 

  • Vicente JB, Gomes CM, Wasserfallen A, Teixeira M (2002) Module fusion in an A-type flavoprotein from the cyanobacterium Synechocystis condenses a multiple-component pathway in a single polypeptide chain. Biochem Biophys Res Commun 294:82–87

    Article  CAS  PubMed  Google Scholar 

  • Wilson A, Ajlani G, Verbavatz JM, Vass I, Kerfeld CA, Kirilovsky D (2006) A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria. Plant Cell 18:992–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang P, Allahverdiyeva Y, Eisenhut M, Aro EM (2009) Flavodiiron proteins in oxygenic photosynthetic organisms: photoprotection of photosystem II by Flv2 and Flv4 in Synechocystis sp. PCC 6803. PLoS ONE 4:e5331

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou J-J, Fernández E, Galván A, Miller AJ (2000) A high affnity nitrate transport system from Chlamydomonas requires two gene products. FEBS Lett 466:225–227

    Article  CAS  PubMed  Google Scholar 

  • Zivcak M, Brestic M, Kunderlikova K, Sytar O, Allakhverdiev SI (2015a) Repetitive light pulse-induced photoinhibition of photosystem I severely affects CO2 assimilation and photoprotection in wheat leaves. Photosynth Res 126:449–463

    Article  CAS  PubMed  Google Scholar 

  • Zivcak M, Brestic M, Kunderlikova K, Olsovska K, Allakhverdiev SI (2015b) Effect of photosystem I inactivation on chlorophyll a fluorescence induction in wheat leaves: does activity of photosystem I play any role in OJIP rise? J Photochem Photobiol B 152:318–324

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Akihiko Kondo, Prof. Tomohisa Hasunuma, and Dr. Shimpei Aikawa for the supply of the Synechococcus sp. PCC 7002 wild type.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ginga Shimakawa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 547 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimakawa, G., Akimoto, S., Ueno, Y. et al. Diversity in photosynthetic electron transport under [CO2]-limitation: the cyanobacterium Synechococcus sp. PCC 7002 and green alga Chlamydomonas reinhardtii drive an O2-dependent alternative electron flow and non-photochemical quenching of chlorophyll fluorescence during CO2-limited photosynthesis. Photosynth Res 130, 293–305 (2016). https://doi.org/10.1007/s11120-016-0253-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-016-0253-y

Keywords

Navigation