Skip to main content

The Water-Water Cycle in Algae

  • Chapter
Photosynthesis in Algae

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 14))

Summary

Photoreduction of O2 to O2 at PS I of thylakoids in Cyanobacteria and algae is stimulated when photon energy is in excess of photosynthesis by environmental stress such as drought, chilling, high temperature and high light intensity. Active oxygen so produced is detoxified by the scavenging enzymes including Superoxide dismutase, ascorbate peroxidase, ferredoxin, monodehydroascorbate radical reductase, dehydroascorbate reductase and glutathione reductase. In these redox reactions of oxygen, the electrons generated by the photooxidation of H2O in PS II flow to O2 in PS I of thylakoid membranes to H2O, which is referred to as the water-water cycle. Here, the operation of the water-water cycle in algae is reviewed and the characteristics of the scavenging enzymes of active oxygen are summarized. In contrast to higher plant chloroplasts, the algal scavenging system of H2O2 comes in four types. The physiological functions of the water-water cycle in algae are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeliovich A, Kellenberg D and Shilo M (1974) Effect of photooxidative conditions on levels of Superoxide dismutase in Anacystis nidulans. Photochem Photobiol 19: 379–382

    PubMed  CAS  Google Scholar 

  • Adams MS (1985) Inorganic carbon reserves of natural waters and the ecophysiological consequences of theirphotosynthetic depletion: (II) Macrophytes. In: Lucas WJ and Berry JA (eds) Inorganic Carbon Uptake by Aquatic Photosynthetic Organisms, pp 421-435. American Society of Plant Physiologists, Rockville

    Google Scholar 

  • Amoroso G, Sültemeyer D, Thyssen C and Fock HP (1998) Uptake of HCO3 and CO2 in cells and chloroplasts from the microalgae Chlamydomonas reinhardtii and Dunaliella tertiolecta. Plant Physiol 116: 193–201

    CAS  Google Scholar 

  • Andrews TJ and Abel KM(1981) Kinetics and subunit interactions of ribulose bisphosphate carboxylase-oxygenase from the cyanobacterium, Synechococcus sp. J Biol Chem 256: 8445–8451

    PubMed  CAS  Google Scholar 

  • Asada K (1988) Superoxide dismutase. In: Otsuka S and Yamanaka T (eds) Metalloproteins, pp 331-341. Elsevier, Amsterdam

    Google Scholar 

  • Asada K (1994a) Production and action of active oxygen species in photosynthetic tissues. In: Foyer CH and Mullineaux PM (eds) Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants, pp 77-104. CRC Press, Boca Raton

    Google Scholar 

  • Asada K (1994b) Mechanisms for scavenging reactive molecules generated in chloroplasts under light stress. In: Baker NR and Bowyer JR(eds) Photoinhibition of Photosynthesis: From Molecular Mechanisms to the Field, pp 129-142. Bios Science Publishers, Oxford

    Google Scholar 

  • Asada K (1996) Radical production and scavenging in the chloroplasts. In: Baker NR (ed) Photosynthesis and the Environment, pp 128-150. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50: 601–639

    PubMed  CAS  Google Scholar 

  • Asada K (2000) The water-water cycle as alternative photon and electron sinks. Phil Trans Roy Soc Lond B 355: 1419–1431

    CAS  Google Scholar 

  • Asada K and Badger MR (1984) Photoreduction of 18O2 and H2 18O2 with concomitant evolution of 16O2 in intact spinach chloroplasts: Evidence for scavenging of hydrogen peroxide by peroxidase. Plant Cell Physiol 25: 1169–1179

    CAS  Google Scholar 

  • Asada K and Takahashi M (1987) Production and scavenging of active oxygen in photosynthesis. In: Kyle DJ, Osmond CB and Arntzen CJ (eds) Photoinhibition, pp 227-287. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Asada K, Urano T and Takahashi M (1973) Subcellular location of Superoxide dismutase in spinach leaves and preparation and properties of crystalline spinach Superoxide dismutase. Eur J Biochem 36: 257–266

    PubMed  CAS  Google Scholar 

  • Asada K, Yoshikawa K, Takahashi M, Maeda Y and Enmanji K (1975) Superoxide dismutase from a blue-green alga, Plectonema boryanum. J Biol Chem 250: 2801–2807

    PubMed  CAS  Google Scholar 

  • Asada K, Kanematsu S and Uchida K (1977) Superoxide dismutases in photosynthetic organisms: Absence of the cuprozinc enzyme in eukaryotic algae. Arch Biochem Biophys 179: 243–256

    PubMed  CAS  Google Scholar 

  • Backhausen JE, Kitzman C and Scheibe R (1994) Competition between electron acceptors in photosynthesis: Regulation of the malate valve during CO2 fixation and nitrite reduction. Photosynth Res 42: 75–86

    CAS  Google Scholar 

  • Badger MR(1980) Kinetic properties of ribulose 1,5-bisphosphate carboxylase/oxygenase from Anabaena variabilis. Arch Biochem Biophys 232: 233–242

    Google Scholar 

  • Badger MR (1985) Photosynthetic oxygen exchange. Annu Rev Plant Physiol 36: 27–53

    CAS  Google Scholar 

  • Badger MR and Price GD (1992) The CO2 concentrating mechanism in cyanobacteria and green algae. Plant Physiol 84: 606–615

    CAS  Google Scholar 

  • Badger MR and Price GD (1994) The role of carbonic anhydrase in photosynthesis. Annu Rev Plant Physiol Mol Biol 45: 369–392

    CAS  Google Scholar 

  • Badger MR and Schreiber U (1993) Effects of inorganic carbon accumulation on photosynthetic oxygen reduction and cyclic electron flow in the cyanobacterium Synechococcus PCC 7942. Photosynth Res 37: 177–191

    CAS  Google Scholar 

  • Badger MR and Spalding MH (2000) CO2 acquisition, concentration and fixation in cyanobacteria and algae. In: Leegood RC, Sharkey TD and von Caemmerer S (eds) Photosynthesis: Physiology and Metabolism, pp 369-397. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Badger MR, Kaplan A and Berry JA (1980) Internal inorganic carbon pool of Chlamydomonas reinhardtii. Evidence for a carbon dioxide-concentrating mechanism. Plant Physiol 66: 407–413

    PubMed  CAS  Google Scholar 

  • Badger MR, Bassett M and Comins HN (1985) A model for HCO3 accumulation and photosynthesis in the cyanobacterium Synechococcus sp. Theoretical predictions and experimental observations. Plant Physiol 77: 465–471

    PubMed  CAS  Google Scholar 

  • Bagchi SN, Ernst A and Bäger P (1991) The effect of activated oxygen species on nitrogenase of Anabaena variabilis. Z Naturforsch 46c: 407-415

    Google Scholar 

  • Bannister JV, Bannister WH and Rotilio G (1987) Aspects of the structure, function and applications of Superoxide dismutase. CRC Crit Rev Biochem 22: 111–180

    PubMed  CAS  Google Scholar 

  • Beardall J (1989) Photosynthesis and photorespiration in marine phytoplankton. Aquat Bot 43: 104–130

    Google Scholar 

  • Bendall DS and Bonner WD (1971) Cyanide-insensitive respiration in plant mitochondria. Plant Physiol 47: 236–261

    PubMed  CAS  Google Scholar 

  • Berkner LV and Marshall LC (1965) On the origin and rise of oxygen concentration in the earth’s atmosphere. J Atmos Sci 22: 225–261

    CAS  Google Scholar 

  • Berieft BS and Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272: 20313–20316

    Google Scholar 

  • Bhunia AK, Roy D and Banerjee SK (1993) Carbaryl-induced effects on glutathione content, glutathione reductase and superoxide dismutase activity of the cyanobacterium Nostoc muscorm. Lett Appl Microbiol 16: 10–13

    CAS  Google Scholar 

  • Biehler K and Fock H (1996) Evidence for the contribution of the Mehler-peroxide reaction in dissipating excess electrons in drought-stressed wheat. Plant Physiol 112: 265–272

    PubMed  CAS  Google Scholar 

  • Bielski BHJ (1982) Chemistry of ascorbic acid radicals. In: Seib PA and Tolbert BH (eds) Ascorbic Acid: Chemistry, Metabolism and Uses, pp 81-100. Amer Chem Soc, Washington D.C.

    Google Scholar 

  • Brechignal F and Andre M (1985) Oxygen uptake and photosynthesis of the red macroalga, Chondrus crispus, in seawater. Effects of oxygen concentration. Plant Physiol 78: 545–550

    Google Scholar 

  • Buchanan BB (1991) Regulation of CO2 assimilation in oxygenic photosynthesis: The ferredoxin/thioredoxin system. Arch Biochem Biophys 288: 1–9

    PubMed  CAS  Google Scholar 

  • Bunt JS and Heeb MA (1971) Consumption of O2 in the light by Chlorella pyrenoidosa and Chlamydomonas reinhardtii. Biochim Biophys Acta 226: 354–359

    PubMed  CAS  Google Scholar 

  • Burns BD and Beardall J (1987) Utilization of inorganic carbon by marine microalgae. J Exp Mar Biol Ecol 107: 75–86

    CAS  Google Scholar 

  • Caiola MG, Canini A and Ocampo-Friedmann R (1996) Iron Superoxide dismutase (Fe-SOD) localization in Chroococciidiopsis sp. (Chroococcales, Cyanobacteria). Phycologia 35: 90–94

    Google Scholar 

  • Campbell WS and Laudenbach DE (1995) Characterization of four Superoxide dismutase genes from a filamentous cyanobacterium. J Bacteriol 177: 964–972

    PubMed  CAS  Google Scholar 

  • Canini A, Civitareale P, Marini S, Grill M, Caiola G and Rotilio G (1992) Purification of iron superoxide dismutase from the cyanobacterium Anabaena cylindrica Lemm. and localization of the enzyme in heterocysts by immunogold labeling. Planta 187: 438–444

    CAS  Google Scholar 

  • Canini A, Albertano P and Caiola MG (1998) Localization of Fecontaining Superoxide dismutase in cyanobacteria from the Baltic sea: Depth and light dependency. New Phytol 139: 247–254

    CAS  Google Scholar 

  • Canvin DT, Miller AG and Espie GS (1990) Inorganic carbon concentrating processes in cyanobacteria. In: Sinha K, Söhe PV, Bhargava SC and Agrawa PK (eds) Proceedings of the International Congress of Plant Physiology, pp 569-580. Water Technology Centre, Indian Agricultural Research Institute, New York

    Google Scholar 

  • Carliotz A and Touati D (1986) Isolation of O2-dismutase mutants in Escherichia coli: Is O2-dismutase necessary for aerobic life? EMBO J 5: 625–630

    Google Scholar 

  • Chae HZ, Kim IH, Kim K and Rhee SG (1993) Cloning, sequencing and mutation of a thiol-specific antioxidant gene of Saccharomyces serevisiae. J Biol Chem 268: 16815–16821

    PubMed  CAS  Google Scholar 

  • Chae HZ, Chung SJ and Rhee SG (1994a) Thioredoxin-dependent peroxidase reductase from yeast. J Biol Chem 269: 27670–27678

    PubMed  CAS  Google Scholar 

  • Chae HZ, Robinson K, Poole LB, Church G, Storz G and Rhee SG (1994b) Cloning and sequencing of thiol-specific antioxidant from mammalian brain: Alkyl reductases and thiolspecific antioxidant define a large family of antioxidant enzymes. Proc Natl Acad Sci USA 91: 7017–7021

    PubMed  CAS  Google Scholar 

  • Chae HZ, Uhm TB and Rhees S (1994c) Dimerization of thiolspecific antioxidant and the essential role of cysteine. Proc Natl Acad Sci USA 91: 7022–7026

    PubMed  CAS  Google Scholar 

  • Chen H, Romo-Leroux PA and Salin ML (1996) The ironcontaining superoxide-encoding gene from Chlamydomonas reinhardtii obtained by direct and inverse PCR. Gene 168: 113–116

    PubMed  CAS  Google Scholar 

  • Cho HS, Kim CS and Jung J (1994) A mechanistic study on the early stage-events involved in low temperature stress in Chlamydomonas reinhardtii. Agr Chem Biotech 37: 433–440

    Google Scholar 

  • Clare DA, Rabinowitch HD and Fridovich I (1984) Superoxide dismutase and chilling injury in Chlorella ellipsoidea. Arch Biochem Biophys 231: 158–163

    PubMed  CAS  Google Scholar 

  • Csøke C, Horvàth LI, Simon P, Borbøly G, Keszthelyi L and Farkas G (1979) An iron-containing Superoxide dismutase from Anacystis nidulans. J Biochem 85: 1397–1404

    Google Scholar 

  • de Jesus MD, Tabatabai F and Chapman DJ (1989) Taxonomic distribution of copper zinc Superoxide dismutase in green algae and its phylogenic importance. J Phycol 25: 767–772

    Google Scholar 

  • Demmig-Adams B and Adams III WW (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43: 599–626

    CAS  Google Scholar 

  • Egashira T, Takahama U and Nakamura K (1989) A reduced activity of catalase as a basis for light dependent methionine sensitivity of a Chlamydomonas reinhardtii mutant. Plant Cell Physiol 30: 1171–1175

    CAS  Google Scholar 

  • Espie GS and Canvin DT(1987) Evidence for Na+-independent HCOj uptake by the cyanobacterium Synechococcus leopoloensis. Plant Physiol 84: 125–130

    PubMed  CAS  Google Scholar 

  • Espie GS, Miller AG, Birch DG and Canvin DT (1988) Simultaneous transport of CO2 and HCO-3 by the cyanobacterium Synechococcus UTEX 625. Plant Physiol 87: 551–554

    PubMed  CAS  Google Scholar 

  • Evans JR and von Caemmerer S (1996) CO2 diffusion inside leaves. Plant Physiol 110: 339–346

    PubMed  CAS  Google Scholar 

  • Farquhar GD, von Caemmerer S and Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149: 78–90

    CAS  Google Scholar 

  • Foyer CH and Halliwell B (1976) Presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta 133: 21–25

    Google Scholar 

  • Fucci L, Oliver CN, Coon MJ and Stadman ER (1983) Inactivation of key metabolic enzymes by mixed-function oxidation reactions: Possible implication in protein turnover and aging. Proc Natl Acad Sci USA 80: 1521–1525

    PubMed  CAS  Google Scholar 

  • Fujii T, Yokoyama E, Inoue K and Sakurai H (1990) The sites of electron donation of Photosy stem I to methyl viologen. Biochim Biophys Acta 1015: 41–48

    CAS  Google Scholar 

  • Furbank RT and Badger MR (1983) Oxygen exchange association with electron transport and photophosphorylation in spinach thylakoids. Biochim Biophys Acta 723: 400–409

    CAS  Google Scholar 

  • Furbank RT, Badger MR and Osmond B (1982) Photosynthetic oxygen exchange in isolated cells and chloroplasts of C3 plants. Plant Physiol 70: 927–931

    PubMed  CAS  Google Scholar 

  • Gimmler H, Weiss C, Baier M and Hartung W (1990) The conductance of the plasmalemma for CO2. J Exp Bot 41: 785–795

    CAS  Google Scholar 

  • Glidewell SM and Raven JA (1975) Measurement of simultaneous oxygen evolution and uptake in Hydrodictyon africanum. J Exp Bot 26: 479–488

    CAS  Google Scholar 

  • Goetze DC and Carpentier R (1994) Ferredoxin-NADP+ reductase is the site of oxygen reduction in pseudocyclic electron transport. Can J Bot 72: 256–260

    CAS  Google Scholar 

  • Goosney DL and Miller AG (1997) High rates of O2 photoreduction by the unicellular cyanobacterium Synechococcus PCC 6803 as determined by the quenching of chlorophyll fluorescence. Can J Bot 75: 394–401

    CAS  Google Scholar 

  • Groden D and Beck E (1979) H2O2 destruction by ascorbatedependent system from chloroplasts. Biochim Biophys Acta 546: 426–435

    PubMed  CAS  Google Scholar 

  • Haas A and Göbel W (1992) Cloning of a O-2 dismutase gene from Listeria ivanovii by functional complementation in Escherichia coli and characterization of the gene product. Mol Gen Genet 231: 313–322

    PubMed  CAS  Google Scholar 

  • Halliwell B and Foyer C (1978) Properties and physiological function of a glutathione reductase purified from spinach leaves by affinity chromatography. Planta 139: 9–17

    CAS  Google Scholar 

  • Hammouda OHE (1994) Superoxide dismutase level in response to paraquat and high temperature in the cyanobacterium Gloeocapsa sp. Biol Plant 36: 229–236

    CAS  Google Scholar 

  • Havir EA and McHale NA (1990) Purification and characterization of an isozyme of catalasc with enhanced-peroxidatic activity from leaves of Nicotiana sylvestris. Arch Biochem Biophys 1990 283: 491–495

    CAS  Google Scholar 

  • He JA, Hu YZ and Jiang LJ (1997) Photodynamic action of phycobiliproteins: In situ generation of reactive oxygen species. Biochim Biophys Acta 1320: 165–174

    CAS  Google Scholar 

  • Heineke D, Riens B, Grosse H, Hoferichter P, Peter U, Flügge UI and Held HW (1991) Redox transfer across the inner chloroplast envelope membrane. Plant Physiol 95: 1131–1137

    PubMed  CAS  Google Scholar 

  • Henle E and Linn S (1997) Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide. J Biol Chem 272: 19095–19098

    PubMed  CAS  Google Scholar 

  • Henry LEA and Hall DO (1977) Superoxide dismutases in algae. In: Miyachi S, Fujita Y, and Shibata K (ed) Photosynthetic Organelles, pp 377-382. Japanese Society of Plant Physiologists, Kyoto

    Google Scholar 

  • Herbert SK, Samson G, Fork DC and Laudenbach DE (1992) Characterization of damage to Photosystems I and II in a cyanobacterium lacking detectable iron Superoxide dismutase activity. Proc Natl Acad Sci USA 89: 8716–8720

    PubMed  CAS  Google Scholar 

  • Hideg E, Spetea C and Vass I (1994a) Singlet oxygen and free radical production, during acceptor-and donor-induced photoinhibition. Studies with spin trapping EPR spectroscopy. Biochim Biophys Acta 1186: 143–152

    CAS  Google Scholar 

  • Hideg E, Spetea C and Vass I (1994b) Singlet oxygen production in thylakoid membranes during photoinhibition as detected by EPR spectroscopy. Photosynth Res 39: 191–199

    CAS  Google Scholar 

  • Hochman A and Shemesh A (1987) Purification and characterization of a catalase-peroxidase from the photosynthetic bacterium Rhodopseudomonas capsulata. J Biol Chem 262: 6871–6876

    PubMed  CAS  Google Scholar 

  • Hossain MA, Nakano Y and Asada K (1984) Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol 25: 385–395

    CAS  Google Scholar 

  • Ishibashi M, Sonoike K and Watanabe A (1997) Photoinhibition of photosynthesis during rain treatment: Identification of the intersystem electron-transfer chain as the site of inhibition. Plant Cell Physiol 38: 168–172

    CAS  Google Scholar 

  • Ishida H, Nishimori Y, Sugisawa M, Makino A and Mae T (1997) The large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase is fragmented into 37-kDa and 16-kDa polypeptides by active oxygen in the lysates of chloroplasts from primary leaves of wheat. Plant Cell Physiol 38: 471–479

    PubMed  CAS  Google Scholar 

  • Ishida H, Shimizu S, Makino A and Mae T (1998) Lightdependent fragmentation of the large subunit of ribulose-1,5bisphosphate carboxylase/oxygenase in chloroplasts isolated from wheat leaves. Planta 204: 305–309

    PubMed  CAS  Google Scholar 

  • Ishikawa T, Takeda T, Shigeoka S, Hirayama O and Mitsunaga T (1993) Requirement for iron and its effect on ascorbate peroxidase in Euglena gracilis. Plant Sci 93: 25–29

    CAS  Google Scholar 

  • Ishikawa T, Sakai K, Yoshimura K, Takeda T and Shigeoka S (1996a) cDNA encoding spinach stromal and thylakoid-bound ascorbate peroxidase, differing in the presence or absence of their 3′-coding regions. FEBS Lett 384: 289–293

    PubMed  CAS  Google Scholar 

  • Ishikawa T, Takeda T, Kohno H and Shigeoka S (1996b) Molecular characterization of Euglena ascorbate peroxidase using monoclonal antibody. Biochim Biophys Acta 1290: 69–75

    PubMed  Google Scholar 

  • Jackson C, Dench J, Moore AL, Halliwell B, Foyer CH and Hall DO (1978) Subcellular localisation and identification of Superoxide dismutase in the leaves of higher plants. Eur J Biochem 91: 339–44

    PubMed  CAS  Google Scholar 

  • Jiang F and Mannerik B(1999) Optimized heterologous expression of glutathione reductase from cyanobacterium Anabaena PCC 7120 and characterization of the recombinant protein. Protein Express Purif 15: 92–98

    CAS  Google Scholar 

  • Jiang F, Hellman U, Sroga G, Bergman B and Mannervik B (1995) Cloning, sequencing, and regulation of the glutathione reductase gene from the cyanobacterium Anabaena PCC 7120. J Biol Chem 270: 22882–22889

    PubMed  CAS  Google Scholar 

  • Johnston AM (1991) The acquisition of inorganic carbon by marine macroalgae. Br Phycol 69: 1123–1132

    CAS  Google Scholar 

  • Kaiser WM (1976) The effect of hydrogen peroxide on CO2fixation of isolated chloroplasts. Biochim Biophys Acta 440: 476–482

    PubMed  CAS  Google Scholar 

  • Kaiser WM (1979) Reversible inhibition of the Calvin cycle and activation of oxidative pentose phosphate cycle in isolated intact chloroplasts by hydrogen peroxide. Planta 145: 377–382

    CAS  Google Scholar 

  • Kanematsu S and Asada K (1978a) Superoxide dismutase from an anaerobic photosynthetic bacterium, Chromatium vinosum. Arch Biochem Biophys 185: 473–482

    PubMed  CAS  Google Scholar 

  • Kanematsu S and Asada K (1978b) Crystalline ferric Superoxide dismutase from an anaerobic green sulfur bacterium, Chlorobium thiosulfatophilum. FEBS Lett 91: 94–98

    PubMed  CAS  Google Scholar 

  • Kanematsu S and Asada K (1979) Ferric and manganic Superoxide dismutases in Euglena gracilis. Arch Biochem Biophys 195: 535–545

    PubMed  CAS  Google Scholar 

  • Kanematsu S and Asada K (1989) CuZn-superoxide dismutase from the fern Equiselum arvense and the green alga Spirogyra sp.: Occurrence of chloroplast and cytosol types of enzyme. Plant Cell Physiol 30: 717–727

    CAS  Google Scholar 

  • Kaplan A, Badger MR and Berry JA (1980) Photosynthesis and the intraccllular inorganic carbon pool in the blue green alga Anabaena variabilis: Response to external CO2 concentration. Planta 149: 219–226

    CAS  Google Scholar 

  • Kelly GJ and Latzko E (1979) Soluble ascorbate peroxidase: Detection in plants and use in vitamin C estimation. Naturwissenschaften 66: 717–718

    Google Scholar 

  • Kerby NW and Raven JA (1985) Transport and fixation of inorganic carbon by marine algae. Adv Bot Res 11: 71–123

    CAS  Google Scholar 

  • Klughammer B, Baier M and Dietz KJ (1998) Inactivation by gene disruption of 2-cysteine-peroxiredoxin in Synechocystis sp. PCC 6803 leads to increased stress sensitivity. Physiol Plant 104: 699–706

    CAS  Google Scholar 

  • Kok B (1956) On the inhibition of photosynthesis by intense light. Biochim Biophys Acta 21: 234–244

    PubMed  CAS  Google Scholar 

  • Kyle DJ, Ohad I and Arntzen CJ (1984) Membrane protein damage and repair: Selective loss of a quinone-protein function in chloroplast membranes. Proc Natl Acad Sci, USA 81: 4070–4074

    PubMed  CAS  Google Scholar 

  • Laudenbach DE, Trick CG and Straus NA (1989)Cloning and characterization of an Anacystis nidulans R2 Superoxide dismutase gene. Mol Gen Genet 216: 455–461

    PubMed  CAS  Google Scholar 

  • Leegood RC, Walker DA, and Foyer CH (1985) Regulation of the Benson-Calvin cycle. In: Barber J and Baker NR (eds) Photosynthetic Mechanisms and the Environment, pp 191-258. Elsevier, Amsterdam

    Google Scholar 

  • Li Q and Canvin DT (1997a) Effects of the intracellular inorganic carbon pool on chlorophyll a fluorescence quenching and O2 photoreduction in air-grown cells of the cyanobacterium Synechococcus UTEX 625. Can J Bot 75: 946–954

    CAS  Google Scholar 

  • Li Q and Canvin DT (1997b) Oxygen photoreduction and its effect on CO2 accumulation and assimilation in air-grown cells of Synechococcus UTEX 625. Can J Bot 75: 274–283

    CAS  Google Scholar 

  • Li Q and Canvin DT (1997c) Inorganic carbon accumulation stimulates linear electron flow to artificial electron acceptors of photosystem I in air-grown cells of the cyanobacterium Synechococcus UTEX 625. Plant Physiol 114: 1273–1281

    PubMed  CAS  Google Scholar 

  • Lovelock CE and Winter K (1996) Oxygen-dependent electron transport and protection from photoinhibition in leaves of tropical tree species. Planta 198: 580–587

    CAS  Google Scholar 

  • Lumsden L, Cammack R and Hall DO (1976) Purification and physicochemical properties of Superoxide dismutase from two photosynthetic microorganisms. Biochim Biophys Acta 438: 380–392

    PubMed  CAS  Google Scholar 

  • Makino A, Miyake C and Yokota A (2002) Physiological functions of the water-water cycle (Mehler reaction) and the cyclic electron flow around PS I in rice leaves. Plant Cell Physiol 43: 1017–1026

    PubMed  CAS  Google Scholar 

  • Mallick N and Rai LC (1999) Response of the antioxidant systems of the nitrogen fixing cyanobacterium Anabaena doliolum to copper. J Plant Physiol 155: 146–149

    CAS  Google Scholar 

  • Mano J, Ushimaru T and Asada K (1997) Ascorbate in thylakoid lumen as an endogeneous electron donor to photosystem II: Protection of thylakoids from photoinhibition and regeneration of ascorbate in stroma by dehydroascorbate reductase. Photosynth Res 53: 197–204

    CAS  Google Scholar 

  • Mano J, Ohono C, Domae Y and Asada K (2001) Chloroplastic ascorbate peroxidase in the primary target of methylviologenmediated photooxidative stress in spinach leaves: Its relevance to monodehydroascorbate radical detected with in vivo ESR. Biochim Biophys Acta 1504: 275–287

    PubMed  CAS  Google Scholar 

  • Marrsho TV, Berens P and Radmer RJ (1979) Photosynthetic oxygen reduction in isolated intact chloroplasts and cells from spinach. Plant Physiol 64: 656–659

    Google Scholar 

  • Mehler AH (1951) Studies on reactivities of illuminated chloroplasts. I. Mechanism of the reduction of oxygen and other Hill reagents. Arch Biochem Biophys 33: 65–77

    PubMed  CAS  Google Scholar 

  • Miller AG and Canvin DT (1987) The quenching of chlorophyll a fluorescence as a consequence of the transport of inorganic carbon by the cyanobacterium Synechococcus UTEX625. Biochim Biophys Acta 894: 407–413

    CAS  Google Scholar 

  • Miller AG and Canvin DT (1989) Glycolaldehyde inhibits CO2 fixation in the cyanobacterium Synechococcus UTEX 625 without inhibiting the accumulation of inorganic carbon or the associated quenching of chlorophyll a fluorescence. Plant Physiol 91: 1044–1049

    PubMed  CAS  Google Scholar 

  • Miller AG, Espie GS and Canvin DT (1988a) Active transport of CO2 by the cyanobacterium Synechococcus UTEX 625. Measurement by mass spectrometry. Plant Physiol 86: 677–683

    PubMed  CAS  Google Scholar 

  • Miller AG, Espie GS and Canvin DT (1988b) Active transport of inorganic carbon increases the rate of O2 photoreduction by the cyanobacterium Synechococcus UTEX 625. Plant Physiol 88: 6–9

    PubMed  CAS  Google Scholar 

  • Miller AG, Espie GS and Canvin DT (1990) Physiological aspects of CO2 and HCO-3 transport by cyanobacteria: a review. Can J Bot 68: 1291–1302

    CAS  Google Scholar 

  • Miller AG, Espie GS and Canvin DT (1991) The effects of inorganic carbon and oxygen on fluorescence in the cyanobacterium Synechococcus UTEX 625. Can J Bot 69: 1151–1160

    CAS  Google Scholar 

  • Miller AG, Hunter KJ, O’Leary SJB and Hart LJ(2000) The photoreduction of H2O2 by Synechococcus sp. PCC 7942 and UTEX 625. Plant Physiol 123: 625–635

    PubMed  CAS  Google Scholar 

  • Mir NA, Salon C and Canvin DT (1995a) Photosynthetic nitrite reduction as influenced by the internal inorganic carbon pool in air-grown cells of Synechococcus UTEX 625. Plant Physiol 108: 313–318

    PubMed  CAS  Google Scholar 

  • Mir NA, Salon C and Canvin DT (1995b) Inorganic carbonstimulated O2 photoreduction is suppressed by NO2assimilation in air-grown cells of Synechococcus UTEX 625. Plant Physiol 109: 1295–1300

    PubMed  CAS  Google Scholar 

  • Mishra PH and Keele JBB(1975) The purification and properties of Superoxide dismutase from a blue-green alga. Biochim Biophys Acta 379: 418–425

    Google Scholar 

  • Miyachi S and Okabe K (1976) Oxygen enhancement of photosynthesis in Anacystis nidulans cells. Plant Cell Physiol 17: 973–986

    CAS  Google Scholar 

  • Miyagawa Y, Tamoi M and Shigeoka S (2000) Evaluation of the defense system in chloroplasts to photooxidative stress caused by paraquat using transgenic tobacco plants expressing catalase. Plant Cell Physiol 41: 311–320

    PubMed  CAS  Google Scholar 

  • Miyake C and Asada K (1992a) Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product monodehydroascorbate radicals in thylakoids. Plant Cell Physiol 33: 541–553

    CAS  Google Scholar 

  • Miyake C and Asada K (1992b) Thylakoid-bound ascorbate peroxidase scavenges hydrogen peroxide photoproduced — Photoreduction of monodehydroascorbate radical. In: Murata N (ed) Research in Photosynthesis, Vol II, pp 563-566. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Miyake C and Asada K (1994) Ferredoxin-dependent photoreduction of monodehydroascorbate radical in spinach thylakoids. Plant Cell Physiol 35: 539–549

    CAS  Google Scholar 

  • Miyake C and Asada K (1996) Inactivation mechanism of ascorbate peroxidase at low concentrations of ascorbate; Hydrogen peroxide decomposes compound I of ascorbate peroxidase. Plant Cell Physiol 37: 423–430

    CAS  Google Scholar 

  • Miyake C and Yokota A (2000) Determination of the rate of photoreduction of O2 in the water-water cycle in watermelon leaves and enhancement of the rate by limitation of photosynthesis. Plant Cell Physiol 41: 335–343

    PubMed  CAS  Google Scholar 

  • Miyake C, Michihata F and Asada K (1991) Scavenging of hydrogen peroxide in prokaryotic and eukaryotic algae: Acquisition of ascorbate peroxidase during the evolution of cyanobacteria. Plant Cell Physiol 32: 33–43

    CAS  Google Scholar 

  • Miyake C, Cao W-H and Asada K (1993) Purification and molecular properties of the thylakoid-bound ascorbate peroxidase in spinach chloroplasts. Plant Cell Physiol 34: 881–889

    CAS  Google Scholar 

  • Miyake C, Schreiber U, Hormann H, Sano S and Asada K (1998) The FAD-enzyme monodehydroascorbate radical reductase mediates photoproduction of Superoxide radicals in spinach thylakoid membranes. Plant Cell Physiol 39: 821–829

    CAS  Google Scholar 

  • Miyake C, Yonekura K, Kobayashi Y and Yokota A (2002) Cyclic electron flow within PS II functions in intact chloroplasts from spinach leaves. Plant Cell Physiol 43: 951–957

    PubMed  CAS  Google Scholar 

  • Montrichard F, Le Guen F, Laval-Martin DL and Davioud-Charvet E (1999) Evidence for the co-existence of glutathione reductase and trypanothione reductase in the non-trypanosomatid Euglenozoa: Euglena gracilis Z. FEBS Lett 442: 29–33

    PubMed  CAS  Google Scholar 

  • Morales I, Batuecas S and de la Rosa FF (1992) Storage of solar energy by production of hydrogen peroxide by the blue-green alga Anacystis nidulans R2: Stimulation by azide. Biotech Bioeng 40: 147–150

    CAS  Google Scholar 

  • Mutsuda M, Ishikawa T, Takeda T and Shigeoka S (1996) The catalase-peroxidase of Synechococcus PCC 7942: purification, nucleotide sequence analysis and expression in Escherichia coli. Biochem J 316: 251–257

    PubMed  CAS  Google Scholar 

  • Nakano Y and Asada K (1987) Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol 28: 131–140

    CAS  Google Scholar 

  • Nelson EB and Tolbert NE (1969) The regulation of glycolate metabolism in Chlamydomonas reinhardtii. Biochim Biophys Acta 184: 263–270

    PubMed  CAS  Google Scholar 

  • Nishiyama Y, Yamamoto H, Allkhverdiev SI, Inaba M, Yokota A and Murata N (2002) Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. EMBO J 20: 5587–5594

    Google Scholar 

  • Obinger C, Regelsberger G, Strasser G, Burner U and Peschek GA (1997) Purification and characterization of a homodimeric catalase-peroxidase from the cyanobacterium Anacystis nidulans. Biochem Biophys Res Comm 235: 545–552

    PubMed  CAS  Google Scholar 

  • Obinger C, Regelsberger G, Pircher A, Strasser G and Peschek GA (1998) Scavenging of Superoxide and hydrogen peroxide in blue-green algae (cyanobacteria). Physiol Plant 104: 693–698

    CAS  Google Scholar 

  • Ogawa K, Kanematsu S, Takabe K and Asada K (1995) Attachment of CuZn-superoxide dismutase to thylakoid membranes at the site of Superoxide generation (PS I) in spinach chloroplasts: Detection of immuno-gold labeling after rapid freezing and substitution method. Plant Cell Physiol 36: 565–573

    CAS  Google Scholar 

  • Okada S, Kanematsu S and Asada K (1979) Intracellular distribution of manganic and ferric Superoxide dismutases in blue-green algae. FEBS Lett 130: 106–110

    Google Scholar 

  • Osmond CB and Grace SC(1995) Perspectives on photoinhibition and photorespiration in the field: quintessential inefficiencies of the light and dark reactions of photosynthesis. J Exp Bot 46: 1351–1362

    CAS  Google Scholar 

  • Patterson COP and Meyers J (1973) Photosynthetic production of hydrogen peroxide by Anacystis nidulans. Plant Physiol 51: 104–109

    PubMed  CAS  Google Scholar 

  • Peltier G and Thiobault P (1985a) Light-dependent oxygen uptake, glyolate, and ammonia release in L-methionine sulfoximine-treated Chlamydomonas. Plant Physiol 77: 281–284

    PubMed  CAS  Google Scholar 

  • Peltier G and Thiobault P (1985b) O2 uptake in the light in Chlamydomonas. Evidence for persistent mitochondrial respiration. Plant Physiol 79: 225–230

    PubMed  CAS  Google Scholar 

  • Potts M (1985) Protein synthesis and proteolysis in immobilized cells of Nostoc communeUTEX 584 (Cyanobacteria) subjected to water stress. J Bacteriol 164: 1025–1031

    PubMed  CAS  Google Scholar 

  • Purdy D and Park SF (1994) Cloning, nucleotide sequence and characterization of a gene encoding O2 - dismutase from Campylobacterjejuni and Campylobacter coli. Microbiol 140: 1203–1208

    CAS  Google Scholar 

  • Rabinowitch HD and Fridovich I (1985) Growth of Chlorella sorokiniana in the presence of sulfite elevates cell content of Superoxide dismutase and imparts resistance towards paraquat. Planta 164: 524–528

    CAS  Google Scholar 

  • Rabinowitch HD, Clare DA, Crapo JD and Fridovich I (1983) Positive correlation between Superoxide dismutase and resistance to paraquat toxicity in the green alga Chlorella sorokiniana. Arch Biochim Biophys 225; 640-648

    Google Scholar 

  • Radmer RJ and Kok B (1976) Photoreduction of O2 primes and replaces CO2 assimilation. Plant Physiol 58: 336–340

    PubMed  CAS  Google Scholar 

  • Radmer R and Ollinger O(1980) Light-driven uptake of oxygen, carbon dioxide, and bicarbonate by the green alga Scenedesmus. Plant Physiol 65: 723–729

    PubMed  CAS  Google Scholar 

  • Radmer R, Kok B and Ollinger O (1978) Kinetics and apparent K m of oxygen cycle under conditions of limiting carbon dioxide fixation. Plant Physiol 61: 915–917

    PubMed  CAS  Google Scholar 

  • Raven JA and Glidewell SM (1975) Sources of ATP for active phosphate transport in Hydrodictyon africanum: Evidence for pseudocyclic photophosphorylation in vivo. New Phytol 75: 197–204

    CAS  Google Scholar 

  • Raven JA, Johnston AM and MacFarlane JJ (1990) Carbon metabolism. In: Cole KM and Sheath RG(eds) Biology of the Red Algae, pp 171-202. Cambridge University Press, Cambridge

    Google Scholar 

  • Rawsthorne S and Larue TA (1986) Metabolism under microaerobic conditions of mitochondria from cowpea nodules. Plant Physiol 81: 1097–1102

    PubMed  CAS  Google Scholar 

  • Rendon JL, Pardo JP, Mendoza-Hernandez G, Rojo-Dominguez A and Hernandez-Arana A (1995) Denaturation behavior of glutathione reductase from cyanobacterium Spirulina maxima in guanidine hydrochloridc. Arch Biochem Biophys 318: 264–270

    PubMed  CAS  Google Scholar 

  • Rijistenbil JW, Derksen JWM, Gerringa LJA, Poortvliet TCW, Sandee A, van den Berg M, van Drie J and Wijnholds JA(1994) Oxidative stress induced by copper: defense and damage in the marine planktonic diatom Ditylum brightwellii, grown in continuous cultures with high and low zinc levels. Marine Biol 119: 583–590

    Google Scholar 

  • Robinson M (1988) Does O2 photoreduction occur within chloroplast in vivo? Physiol Plant 72: 666–680

    CAS  Google Scholar 

  • Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG and Hoekstra WG (1973) Selenium: Biochemical role as a component of glutathione peroxidase. Science 179: 588–590

    PubMed  CAS  Google Scholar 

  • Roudyk SN, Moxhet A, Matagne RF and Aghion J (1996) Evidence of singlet oxygen evolution by whole living cells of Chlamydomonas reinhardtii. Photosynth Res 47: 99–102

    CAS  Google Scholar 

  • Roy H and Andrews TJ (2000) Rubisco: Assembly and metabolism. In: Leegood RC, Sharkcy TD and von Caemmerer S (eds) Photosynthesis: Physiology and Metabolism, pp 53-83. Kluwer Academic Publishers

    Google Scholar 

  • Sakurai H, Kusumoto N, Kitayama K and Togasaki RT (1993) Isozymes of Superoxide dismutase in Chlamydomonas and purification of one of the major isozymes containing Fe. Plant Cell Physiol 34: 1133–1137

    CAS  Google Scholar 

  • Sano S, Miyake C, Mikami B and Asada K (1995) Molecular characterization of monodehydroascorbate radical reductase from cucumber overproduced in Escherichia coli. J Biol Chem 270: 21354–21361

    PubMed  CAS  Google Scholar 

  • Sano S, Ueda M, Kitajima S, Takeda T, Shigeoka S, Kurano N, Miyachi S, Miyake C and Yokota A (2001) Characterization of ascorbate peroxidases from unicellular red alga Galdieria partita. Plant Cell Physiol 42: 433–440

    PubMed  CAS  Google Scholar 

  • Serrano A and Llobell A (1993) Occurrence of two isoforms of glutathione reductase in the green alga Chlamydomonas reinhardtii. Planta 190: 199–205

    CAS  Google Scholar 

  • Serrano A, Rivas J and Losada M (1984) Purification and properties of glutathione reductase from the cyanobacterium Anabaena sp. strain 7119. J Bacteriol 158: 317–324

    PubMed  CAS  Google Scholar 

  • Shelp BJ and Canvin DT(1984) Evidence for bicarbonate accumulation by Anacystis nidulans. CanJBot 62: 1398–1403

    CAS  Google Scholar 

  • Shigeoka S, Nakano Y and Kitaoka S (1980) Purification and some properties of L-ascorbic acid-specific peroxidase in Euglena gracilis z. Arch Biochem Biophys 201: 121–127

    PubMed  CAS  Google Scholar 

  • Shigeoka S, Yasumoto R, Onishi T, Nakano Y and Kitaoka S (1987) Properties of monodehydroascorbate reductase and dehydroascorbate reductase and their participation in the regeneration of ascorbate in Euglena gracilis. J Gen Microbiol 133: 227–232

    CAS  Google Scholar 

  • Shigeoka S, Takeda T and Hanaoka T (1991) Characterization and immunological properties of selenium-containing glutathione peroxidase induced by selenite in Chlamydomonas reinhardtii. Biochem J 275: 623–627

    PubMed  CAS  Google Scholar 

  • Shiraiwa Y, Bader KP and Schmid GH (1988) Mass spectrometric analysis of oxygen gas exchange in high-and low-CO2 cells of Chlorella vulgaris. Z Naturforsch 43c: 709-716

    Google Scholar 

  • Shirkey B, Kowarcik DP, Wright DJ, Wilmoth G, Prickett TF, Helm RF, Gregory E and Potts M (2000) Active Fe-containing Superoxide dismutase and abundant sodF mRNA in Nostoc commune (Cyanobacteria) afteryears of desiccation. J Bacteriol 182: 189–197

    PubMed  CAS  Google Scholar 

  • Smirnoff N (2000) Ascorbate biosynthesis and function in photoprotection. Phil Trans R Soc Lond B 355: 1455–1464

    CAS  Google Scholar 

  • Spalding MH (1989) Photosynthesis and photorespiration in fresh water green algae. Aqua Bot 34: 181–209

    CAS  Google Scholar 

  • Spalding MH and Portis AJJ (1985) A model of carbon dioxide assimilation in Chlamydomonas reinhardtii. Planta 164: 308–320

    CAS  Google Scholar 

  • Steinitz Y, Mazor Z and Shilo M (1979) A mutant of the cyanobacterium Plectonema boryanum resistant to photooxidation. Plant Sci Lett 16: 327–335

    CAS  Google Scholar 

  • Sültemeyer DF, Klug K and Fock HP (1987) Effect of dissolved inorganic carbon on oxygen evolution and uptake by Chlamydomonas reinhardtii suspensions adapted to ambient and CO2enriched air. Photosynth Res 12: 25–33

    Google Scholar 

  • Sültemeyer D, Biehler K and Fock HP (1993) Evidence for the contribution of pseudocyclic photophosphorylation to the energy requirement of the mechanism for concentrating inorganic carbon in Chlamydomonas. Planta 189: 235–242

    Google Scholar 

  • Sültemeyer D, Klughammer B, Badger MR and Price GD (1998) Fast induction of high-affinity HCO-3 J transport in cyanobacteria. Plant Physiol 116: 183–192

    Google Scholar 

  • Takahashi M and Asada K (1982) Dependence of oxygen affinity for Mehler reaction on photochemical activity of chloroplast thylakoids. Plant Cell Physiol 23: 1457–1461

    CAS  Google Scholar 

  • Takeda T, Ishikawa T, Shigeoka S, Hirayama O and Mitsunaga T (1993) Purification and characterization of glutathione reductase from Chlamydomonas reinhardtii. J Gen Microbiol 139: 2233–2238

    CAS  Google Scholar 

  • Takeda T, Yokota A and Shigeoka S (1995) Resistance of photosynthesis to hydrogen peroxide in algae. Plant Cell Physiol 36: 1089–1095

    CAS  Google Scholar 

  • Takeda T, Ishikawa T and Shigeoka S (1997) Metabolism of hydrogen peroxide by the scavenging system in Chlamydomonas reinhardtii. Physiol Plant 99: 49–55

    CAS  Google Scholar 

  • Takeda T, Yoshimura K, Yoshii M, Kanahoshi H, Miyasaka H and Shigeoka S (2000) Molecular characterization and physiological role of ascorbate peroxidase from halotolerant Chlamydomonas sp. W80 strain. Arch Biochem Biophys 376: 82–90

    PubMed  CAS  Google Scholar 

  • Takeshima Y, Takatsugu N, Sugiura M and Hagiwara H (1994) High-level expression of human O-2 dismutase in the cyanobacterium Anacystis nidulans 6301. Proc Natl Acad Sci USA 91: 9685–9689

    PubMed  CAS  Google Scholar 

  • Tailing JF (1985) Inorganic carbon reserves of natural waters and ecophysiological consequences of their photosynthetic depletion: Microalgae. In: Lucas WJ and Berry JA (eds) Inorganic Carbon Uptake by Aquatic Photosynthetic Organisms, pp 403-420. American Society of Plant Physiologists, Rockville

    Google Scholar 

  • Tamoi M, Ishikawa T, Takeda T and Shigeoka S (1996a) Molecular characterization and resistance to hydrogen peroxide of two fructose-1,6-bisphosphatases from Synechococcus PCC 7942. Arch Biochem Biophys 334: 27–36

    PubMed  CAS  Google Scholar 

  • Tamoi M, Ishikawa T, Takeda T and Shigeoka S (1996b) Enzymic and molecular characterization of NADP-dependent glyceraldehydes-3-phosphate dehydrogenase from Synechococcus PC 7942: Resistance of the enzyme to hydrogen peroxide. Biochem J 316: 685–690

    PubMed  CAS  Google Scholar 

  • Tamoi M, Murakami A, Takeda T and Shigeoka S (1998) Acquisition of a new type of fhictose-1,6-bisphosphatase with resistance to hydrogen peroxide in cyanobacteria: Molecular characterization of the enzyme for Synechocystis PCC 6803. Biochim Biophys Acta 1383: 232–244

    PubMed  CAS  Google Scholar 

  • Tanaka K, Otsubo T and Kondo N (1982) Participation of hydrogen peroxide in the inactivation of Calvin-cycle SH enzymes in SC2-fumigated spinach leaves. Plant Cell Physiol 23: 1009–1018

    CAS  Google Scholar 

  • Tel-Or E, Huflejt M and Packer L (1985) The role of glutathione and ascorbate in hydroperoxide removal in cyanobacteria. Biochem Biophys Res Comm 132: 533–539

    PubMed  CAS  Google Scholar 

  • Tel-Or E, Huflejt ME and Packer L (1986) Hydroperoxide metabolism in cyanobacteria. Arch Biochem Biophys 246: 396–402

    PubMed  CAS  Google Scholar 

  • Thomas DJ, Avenson TJ, Thomas JB and Herbert SK (1998) A cyanobacterium lacking iron Superoxide dismutase is sensitized to oxidative stress induced with methyl viologen but is not sensitized to oxidative stress induced with norflurazon. Plant Physiol 116: 1593–1602

    PubMed  CAS  Google Scholar 

  • Thomas DJ, Thomas JB, Prier SD, Nasso NE and Herbert SK (1999) Iron Superoxide dismutase protects against chilling damage in the cyanobacterium Synechococcus species PCC 7942. Plant Physiol 120: 275–282

    PubMed  CAS  Google Scholar 

  • Tichy M and Vermaas W(1999)In vivo role of catalase-peroxidase in Synechocystis sp. strain PCC 6803. J Bacteriol 181: 1875–1882

    PubMed  CAS  Google Scholar 

  • von Caemmerer S and Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153: 376–387

    Google Scholar 

  • Yamaguchi J, Nishimura N and Akazawa T (1986) Purification and characterization of heme-containing low-activity form of catalase from greening pumpkin cotyledons. Eur J Biochem 159: 315–322

    PubMed  CAS  Google Scholar 

  • Yamamoto H, Miyake C, Dietz KJ, Tomizawa K, Murata N and Yokota A (1999) Thioredoxin peroxidase in the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett 447: 269–273

    PubMed  CAS  Google Scholar 

  • Yokota A, Shigeoka S, Onishi T and Kitaoka S (1988) Selenium as inducer of glutathione peroxidase in low-CO2-grown Chlamydomonas reinhardtii. Plant Physiol 86: 649–651

    PubMed  CAS  Google Scholar 

  • Zhang SP, Xie J, Zhang JP, Zhao JQ and Jiang LJ (1999) Electron spin resonance studies on photosensitized formation of hydroxyl radical by C-phycocyanin from Spirulina platensis. Biochim Biophys Acta 1426: 205–211

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chikahiro Miyake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Miyake, C., Asada, K. (2003). The Water-Water Cycle in Algae. In: Larkum, A.W.D., Douglas, S.E., Raven, J.A. (eds) Photosynthesis in Algae. Advances in Photosynthesis and Respiration, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1038-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1038-2_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3772-3

  • Online ISBN: 978-94-007-1038-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics