Skip to main content
Log in

The Prochlorococcus carbon dioxide-concentrating mechanism: evidence of carboxysome-associated heterogeneity

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The ability of Prochlorococcus to numerically dominate open ocean regions and contribute significantly to global carbon cycles is dependent in large part on its effectiveness in transforming light energy into compounds used in cell growth, maintenance, and division. Integral to these processes is the carbon dioxide-concentrating mechanism (CCM), which enhances photosynthetic CO2 fixation. The CCM involves both active uptake systems that permit intracellular accumulation of inorganic carbon as the pool of bicarbonate and the system of HCO3 conversion into CO2. The latter is located in the carboxysome, a microcompartment designed to promote the carboxylase activity of Rubisco. This study presents a comparative analysis of several facets of the Prochlorococcus CCM. Our analyses indicate that a core set of CCM components is shared, and their genomic organization is relatively well conserved. Moreover, certain elements, including carboxysome shell polypeptides CsoS1 and CsoS4A, exhibit striking conservation. Unexpectedly, our analyses reveal that the carbonic anhydrase (CsoSCA) and CsoS2 shell polypeptide have diversified within the lineage. Differences in csoSCA and csoS2 are consistent with a model of unequal rates of evolution rather than relaxed selection. The csoS2 and csoSCA genes form a cluster in Prochlorococcus genomes, and we identified two conserved motifs directly upstream of this cluster that differ from the motif in marine Synechococcus and could be involved in regulation of gene expression. Although several elements of the CCM remain well conserved in the Prochlorococcus lineage, the evolution of differences in specific carboxysome features could in part reflect optimization of carboxysome-associated processes in dissimilar cellular environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alikhan N-F, Petty NK, Zakour NLB, Beatson SA (2011) BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genom 12:402

    Article  CAS  Google Scholar 

  • Badger MR, Price GD (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54:609–622

    Article  CAS  PubMed  Google Scholar 

  • Badger MR, Hanson D, Price GD (2002) Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria. Funct Plant Biol 29:161–173

    Article  CAS  Google Scholar 

  • Badger MR, Price GD, Long BM, Woodger FJ (2006) The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism. J Exp Bot 57:249–265

    Article  CAS  PubMed  Google Scholar 

  • Bibby TS, Mary I, Nield J, Partensky F, Barber J (2003) Low-light-adapted Prochlorococcus species possess specific antennae for each photosystem. Nature 424:1051–1054

    Article  CAS  PubMed  Google Scholar 

  • Bonacci W, Teng PK, Afonso B, Niederholtmeyer H, Grob P, Silver PA, Savage DF (2012) Modularity of a carbon-fixing protein organelle. Proc Natl Acad Sci USA 109:478–483

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cannon GC, Bradburne CE, Aldrich HC, Baker SH, Heinhorst S, Shively JM (2001) Microcompartments in prokaryotes: carboxysomes and related polyhedral. Appl Environ Microbiol 67:5351–5361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cannon GC, Heinhorst S, Bradburne CE, Shively JM (2002) Carboxysome genomics: a status report. Funct Plant Biol 29:175–182

    Article  CAS  Google Scholar 

  • Coleman ML, Sullivan MB, Martiny AC, Steglich C, Barry K, DeLong EF, Chisholm SW (2006) Genomic islands and the ecology and evolution of Prochlorococcus. Science 311:1768–1770

    Article  CAS  PubMed  Google Scholar 

  • Dai W, Fu C, Raytchevea D, Flanagan J, Khant HA, Liu X, Rochat RH, Haase-Pettingell C, Piret J, Ludtke SJ, Nagayama K, Schmid MF, King JA, Chiu W (2013) Visualizing virus assembly intermediates inside marine cyanobacteria. Nature 502:707–710

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Araujo C, Arefeen D, Tadesse Y, Long BM, Price GD, Rowlett RS, Kimber MS, Espie GS (2014) Identification and characterization of a carboxysomal γ-carbonic anhydrase from the cyanobacterium Nostoc sp. PCC7120. Photosyn Res 121:135–150

    Article  PubMed  Google Scholar 

  • Defrance M, Janky R, Sand O, van Helden J (2008) Using RSAT oligo-analysis and dyad-analysis tools to discover regulatory signals in nucleic sequences. Nature Prot 3:1589–1603

    Article  CAS  Google Scholar 

  • Dou Z, Heinhorst S, Williams EB, Murin CD, Shively JM, Canon GC (2008) CO2 fixation kinetics of Halothiobacillus neapolitanus mutant carboxysomes lacking carbonic anhydrase suggest the shell acts as a diffusional barrier for CO2. J Biol Chem 283:10377–10384

    Article  CAS  PubMed  Google Scholar 

  • Dufresne A, Ostrowski M, Scanlan DJ, Garczarek L, Mazard S, Palenik BP, Paulsen IT, Tandeau de Marsac N, Wincker P, Dossat C, Ferriera S, Johnson J, Post AF, Hess WR, Partensky F (2008) Unraveling the genomic mosaic of a ubiquitous genus of marine cyanobacteria. Genome Biol 9:R90

    Article  PubMed Central  PubMed  Google Scholar 

  • Espie GS, Kimber MS (2011) Carboxysomes: cyanobacterial RubisCO comes in small packages. Photosyn Res 109:7–20

    Article  CAS  PubMed  Google Scholar 

  • Hsiao WWL, Ung K, Aeschliman D, Bryan J, Finlay BB, Brinkman FSL (2005) Evidence of a large novel gene pool associated with prokaryotic genomic islands. PLoS Genet 1:e62

    Article  PubMed Central  PubMed  Google Scholar 

  • Iancu CV, Ding HJ, Morris DM, Dias DP, Gonzales AD, Martino A, Jensen GJ (2007) The structure of isolated Synechococcus strain WH8102 carboxysomes revealed by electron cryotomography. J Mol Biol 372:764–773

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iancu CV, Morris DM, Dou Z, Heinhorst S, Canon GC, Jensen GJ (2010) Organization, structure, and assembly of α-carboxysomes determined by electron cryotomography of intact cells. J Mol Biol 396:105–117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson ZI, Zinser ER, Coe A, McNulty NP, Woodward EMS, Chisholm SW (2006) Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311:1737–1740

    Article  CAS  PubMed  Google Scholar 

  • Jones DT (2007) Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics 23:538–544

    Article  CAS  PubMed  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1994) A model recognition approach to the prediction of all-helical membrane protein structure and topology. Biochem 33:3038–3049

    Article  CAS  Google Scholar 

  • Keeling TJ, Samborska B, Demers RW, Kimber MS (2014) Interactions and structural variability of β-carboxysomal shell protein CcmL. Photosyn Res 121:125–133

    Article  CAS  PubMed  Google Scholar 

  • Kerfeld CA, Sawaya MR, Tanaka S, Nguyen CV, Phillips M, Beeby M, Yeates TO (2005) Protein structures forming the shell of primitive bacterial organelles. Science 309:936–938

    Article  CAS  PubMed  Google Scholar 

  • Kerfeld CA, Heinhorst S, Cannon GC (2010) Bacterial microcompartments. Annu Rev Microbiol 64:391–408

    Article  CAS  PubMed  Google Scholar 

  • Kettler GC, Martiny AC, Huang K, Zucker J, Coleman ML, Rodrigue S, Chen F, Lapidus A, Ferriera S, Johnson J, Steglich C, Church GM, Richardson P, Chisholm SW (2007) Patterns and implications of gene gain and loss in the evolution of Prochlorococcus. PLoS Genet 3:2515–2528

    Article  CAS  Google Scholar 

  • Kimber MS (2014) Carboxysomes – Sequestering RubisCO for efficient carbon fixation. In: (MF Homann-Marriott, Ed) The Structural Basis of Biological Energy Generation. Advances in Photosynthesis and Respiration. Springer, Dordrecht, The Netherlands, pp.133–148

  • Kinney JN, Axen SD, Kerfeld CA (2011) Comparative analysis of carboxysome shell proteins. Photosyn Res 109:21–32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Klein MG, Zwart P, Bagby SC, Cai F, Chisholm SW, Heinhorst S, Cannon GC, Kerfeld CA (2009) Identification and structural analysis of a novel carboxysome shell protein with implications for metabolite transport. J Mol Biol 392:319–333

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics 5:150–163

    Article  CAS  PubMed  Google Scholar 

  • Kupriyanova EV, Sinetova MA, Cho SM, Park Y-I, Los DA, Pronina NA (2013) CO2-concentrating mechanism in cyanobacterial photosynthesis: organization, physiological role, and evolutionary origin. Photosyn Res 117:133–146

    Article  CAS  PubMed  Google Scholar 

  • Langille MGI, Hsiao WWL, Brinkman FSL (2008) Evaluation of genomic island predictors using a comparative genomics approach. BMC Bioinformatics 9:1–10

    Article  Google Scholar 

  • Menon BB, Heinhorst S, Shively JM, Cannon GC (2010) The carboxysome shell is permeable to protons. J Bact 192:5881–5886

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moore LR, Chisholm SW (1999) Photophysiology of the marine cyanobacterium Prochlorococcus: ecotypic differences among cultured isolates. Limnol Oceanogr 44:628–638

    Article  Google Scholar 

  • Moore LR, Rocap G, Chisholm SW (1998) Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393:464–467

    Article  CAS  PubMed  Google Scholar 

  • Nishimura T, Yamaguchi O, Takatani N, Maeda S, Omata T (2014) In vitro and in vivo analyses of the role of the carboxysomal β-type carbonic anhydrase of the cyanobacterium Synechococcus elongatus in carboxylation of ribulose-1,5-bisphosphate. Photosyn Res 121:151–157

    Article  CAS  PubMed  Google Scholar 

  • Price GD (2011) Inorganic carbon transporters of the cyanobacterial CO2 concentrating mechanism. Photosyn Res 109:47–57

    Article  CAS  PubMed  Google Scholar 

  • Price GD, Woodger FJ, Badger MR, Howitt SM, Tucker L (2004) Identification of a SulP-type bicarbonate transporter in marine cyanobacteria. Proc Natl Acad Sci USA 101:18228–18233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Price GD, Badger MR, Woodger FJ, Long BM (2008) Advances in understanding the cyanobacterial CO2-concentrating mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J Exp Bot 59:1441–1461

    Article  CAS  PubMed  Google Scholar 

  • Rae BD, Forster B, Badger MR, Price GD (2011) The CO2-concentrating mechanism of Synechococcus WH5701 is composed of native and horizontally-acquired components. Photosyn Res 109:59–72

    Article  CAS  PubMed  Google Scholar 

  • Rae BD, Long BM, Badger MR, Price GD (2013a) Functions, compositions, and evolution of the two types of carboxysomes: polyhedral microcompartments that facilitate CO2 fixation in cyanobacteria and some proteobacteria. Microbiol Mol Biol Rev 77:357–379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rae BD, Long BM, Whitehead LF, Forster B, Badger MR, Price GD (2013b) Cyanobacterial carboxysomes: microcompartments that facilitate CO2 fixation. J Mol Microbiol Biotechnol 23:300–307

    Article  CAS  PubMed  Google Scholar 

  • Roberts EW, Cai F, Kerfeld CA, Cannon GC, Heinhorst S (2012) Isolation and characterization of the Prochlorococcus carboxysome reveal the presence of the novel shell protein CsoS1D. J Bacteriol 194:787–795

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, Wu D, Eisen JA, Hoffman JM, Remington K, Beeson K, Tran B, Smith H, Baden-Tillson H, Stewart C, Thorpe J, Freeman J, Andrews-Pfannkoch C, Venter JE, Li K, Kravitz S, Heidelberg JF, Utterback T, Rogers YH, Falcon LI, Souza V, Bonilla-Rosso G, Eguiarte LE, Karl DM, Sathyendranath S, et al. (2007) The Sorcerer II global ocean sampling expedition: Northwest Atlantic through eastern tropical Pacific. PLoS Biol 5:e77

  • Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B (2000) Artemis: sequence visualization and annotation. Bioinformatics 16:944–945

    Article  CAS  PubMed  Google Scholar 

  • Sawaya MR, Cannon GC, Heinhorst S, Tanaka S, Williams EB, Yeates TO, Kerfeld CA (2006) The structure of the β-carbonic anhydrase from the carboxysomal shell reveals a distinct subclass with one active site for the price of two. J Biol Chem 281:7546–7555

  • Schmid MF, Paredes AM, Khant HA, Soyer F, Aldrich HC, Chiu W, Shively JM (2006) Stucture of Halothiobacillus neapolitanus carboxysomes by cryo-electron tomography. J Mol Biol 364:526–535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scott KM, Henn-Sax M, Harmer TL, Longo DL, Frame CH, Cavanaugh CM (2007) Kinetic isotope effect and biochemical characterization of form IA RubisCO from the marine cyanobacterium Prochlorococcus marinus MIT9313. Limnol Oceanogr 52:2199–2204

    Article  CAS  Google Scholar 

  • Shelden MC, Howitt SM, Price GD (2010) Membrane topology of the cyanobacterial bicarbonate transporter, BicA, a member of the SulP (SLC26A) family. Mol Mem Biol 27:12–23

    Article  Google Scholar 

  • Shibata M, Katoh H, Sonoda M, Ohkawa H, Shimoyama M, Fukuzawa H, Kaplan A, Ogawa T (2002) Genes essential to sodium-dependent bicarbonate transport in cyanobacteria – function and phylogenetic analysis. J Biol Chem 277:18658–18664

    Article  CAS  PubMed  Google Scholar 

  • Shively JM, Ball FL, Kline BW (1973) Electron microscopy of the carboxysomes (polyhedral bodies) of Thiobacillus neapolitanus. J Bact 116:1405-1411

  • So AK-C, Espie GS, Williams EB, Shively JM, Heinhorst S, Cannon GC (2004) A novel evolutionary lineage of carbonic anhydrase (ε- Class) is a component of the carboxysome shell. J Bact 186:623–630

  • Sutter M, Wilson SC, Deutsch S, Kerfeld CA (2013) Two new high-resolution crystal structures of carboxysome pentamer proteins reveal high structural conservation of CcmL orthologs among distantly related cyanobacterial species. Photosyn Res 118:9–16

    Article  CAS  PubMed  Google Scholar 

  • Tajima F (1993) Simple methods for testing the molecular evolutionary clock hypothesis. Genetics 135:599–607

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tanaka S, Kerfeld CA, Sawaya MR, Cai F, Heinhorst S, Canon GC, Yeates TO (2008) Atomic-level models of the bacterial carboxysome shell. Science 319:1083–1086

    Article  CAS  PubMed  Google Scholar 

  • Thomas-Chollier M, Sand O, Turatsinze J-V, Janky R, Defrance M, Vervisch E, Brohee S, van Helden J (2008) RSAT: regulatory sequence analysis tools. Nucleic Acids Res 36:W119–W127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ting CS, Hsieh C, Sundararaman S, Mannella C, Marko M (2007) Cryo-electron tomography reveals the comparative three-dimensional architecture of Prochlorococcus, a globally important marine cyanobacterium. J Bacteriol 189:4485–4493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ting CS, Ramsey ME, Wang YL, Frost AM, Jun E, Durham T (2009) Minimal genomes, maximal productivity: comparative genomics of the photosystem and light-harvesting complexes in the marine cyanobacterium, Prochlorococcus. Photosyn Res 101:1–19

    Article  CAS  PubMed  Google Scholar 

  • Tolonen AC, Aach J, Lindell D, Johnson ZI, Rector T, Steen R, Church GM, Chisholm SW (2006) Global gene expression of Prochlorococcus ecotypes in response to changes in nitrogen availability. Mol Syst Biol 2: Article 53

  • Tsai Y, Sawaya MR, Cannon GC, Cai F, Williams EB, Heinhorst S, Kerfeld CA, Yeates TO (2007) Structural analysis of CsoS1A and the protein shell of the Halothiobacillus neapolitanus carboxysome. PLoS Biol 5:1345–1354

    Article  CAS  Google Scholar 

  • Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18:691–699

    Article  CAS  PubMed  Google Scholar 

  • Yeates TO, Kerfeld CA, Heinhorst S, Cannon GC, Shively JM (2008) Protein-based organelles in bacteria: carboxysomes and related microcompartments. Nat Rev Microbiol 6:681–691

    Article  CAS  PubMed  Google Scholar 

  • Zhang PP, Battchikova N, Jansen T, Appel J, Ogawa T, Aro EM (2004) Expression and functional roles of the two distinct NDH-1 complexes and the carbon acquisition complex NdhD3/NdhF3/CupA/Sll1735 in Synechocystis PCC6803. Plant Cell 16:3326–3340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation, Award Number MCB-0850900 to C.S. Ting and by Williams College (C.S.T., K.H.D., R.A.P., K.W.H., C.J.P., C.E.B., E.M.B.). The authors would like to thank the anonymous reviewers of this manuscript for their insightful suggestions and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire S. Ting.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 63 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ting, C.S., Dusenbury, K.H., Pryzant, R.A. et al. The Prochlorococcus carbon dioxide-concentrating mechanism: evidence of carboxysome-associated heterogeneity. Photosynth Res 123, 45–60 (2015). https://doi.org/10.1007/s11120-014-0038-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-014-0038-0

Keywords

Navigation