Skip to main content

Advertisement

Log in

The CO2-concentrating mechanism of Synechococcus WH5701 is composed of native and horizontally-acquired components

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The cyanobacterial CO2-concentrating mechanism (CCM) is an effective adaptation that increases the carbon dioxide (CO2) concentration around the primary photosynthetic enzyme Ribulose-1,5-bisphosphate Carboxylase/Oxygenase (RuBisCO). α-Cyanobacteria (those containing Form1-A RuBisCO within cso-type α-carboxysomes) have a limited CCM composed of a small number of Ci-transporters whereas β-cyanobacteria (those species containing Form-1B RuBisCO within ccm-type β-carboxysomes) exhibit a more diverse CCM with a greater variety in Ci-transporter complement and regulation. In the coastal species Synechococcus sp. WH5701 (α-cyanobacteria), the minimal α-cyanobacterial CCM has been supplemented with β-cyanobacterial Ci transporters through the process of horizontal gene transfer (HGT). These transporters are transcriptionally regulated in response to external Ci-depletion however this change in transcript abundance is not correlated with a physiological induction. WH5701 exhibits identical physiological responses grown at 4% CO2 (K 1/2 ≈ 31 μM Ci) and after induction with 0.04% CO2 (K 1/2 ≈ 29 μM Ci). Insensitivity to external Ci concentration is an unusual characteristic of the WH5701 CCM which is a result of evolution by HGT. Our bioinformatic and physiological data support the hypothesis that WH5701 represents a clade of α-cyanobacterial species in transition from the marine/oligotrophic environment to a coastal/freshwater environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abascal F, Zardoya R, Posada D (2005) Prottest: selection of best-fit models of protein evolution. Bioinformatics 21(9):2104–2105. doi:10.1093/bioinformatics/bti263

    Article  PubMed  CAS  Google Scholar 

  • Aberer AJ, Pattengale ND, Stamatakis A (2010) Parallelized phylogenetic post-analysis on multi-core architectures. J Comput Sci 1(2):107–114

    Article  Google Scholar 

  • Alberte R, Wood A, Kursar T, Guillard R (1984) Novel phycoerythrins in marine synechococcus spp.: characterization and evolutionary and ecological implications. Plant Physiol 75(3):732

    Article  PubMed  CAS  Google Scholar 

  • Alm EJ, Huang KH, Price MN, Koche RP, Keller K, Dubchak IL, Arkin AP (2005) The microbesonline web site for comparative genomics. Genome Res 15(7):1015–1022. doi:10.1101/gr.3844805

    Article  PubMed  CAS  Google Scholar 

  • Badger MR, Bek EJ (2008) Multiple rubisco forms in proteobacteria: their functional significance in relation to CO2 acquisition by the cbb cycle. J Exp Bot 59(7):1525–1541. doi:10.1093/jxb/erm297

    Article  PubMed  CAS  Google Scholar 

  • Badger MR, Hanson D, Price GD (2002) Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria. Funct Plant Biol 29(3):161–173. doi:10.1071/PP01213

    Article  CAS  Google Scholar 

  • Badger MR, Price GD, Long BM, Woodger FJ (2006) The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism. J Exp Bot 57(2):249–265. doi:10.1093/jxb/eri286

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL, Hall BD (1982) Codon selection in yeast. J Biol Chem 257(6):3026

    PubMed  CAS  Google Scholar 

  • Berner RA (2001) Modeling atmospheric O2 over phanerozoic time. Geochim Cosmochim Ac 65(5):685–694

    Article  CAS  Google Scholar 

  • Berner RA, Kothavala Z (2001) Geocarb III: a revised model of atmospheric CO2 over phanerozoic time. Am J Sci 301(2):182–204. doi:10.2475/ajs.301.2.182

    Article  CAS  Google Scholar 

  • Blank CE, Sanchez-Baracaldo P (2010) Timing of morphological and ecological innovations in the cyanobacteria; a key to understanding the rise in atmospheric oxygen. Geobiology 8(1):1–23

    Article  PubMed  CAS  Google Scholar 

  • Bolhuis H, Severin I, Confurius-Guns V, Wollenzien UIA, Stal LJ (2009) Horizontal transfer of the nitrogen fixation gene cluster in the cyanobacterium microcoleus chthonoplastes. ISME J 4(1):121–130

    Article  PubMed  Google Scholar 

  • Boyer SL, Flechtner VR, Johansen JR (2001) Is the 16s–23s rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. Mol Biol Evol 18(6):1057

    PubMed  CAS  Google Scholar 

  • Casamatta DA, Johansen JR, Vis ML, Broadwater ST (2005) Molecular and morphological characterization of ten polar and near-polar strains within the oscillatoriales (cyanobacteria). J Phycol 41(2):421–438. doi:10.1111/j.1529-8817.2005.04062.x

    Article  CAS  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17(4):540–552

    PubMed  CAS  Google Scholar 

  • Dufresne A, Garczarek L, Partensky F (2005) Accelerated evolution associated with genome reduction in a free-living prokaryote. Genome Biol 6(2):R14

    Article  PubMed  Google Scholar 

  • Dufresne A, Ostrowski M, Scanlan D, Garczarek L, Mazard S, Palenik B, Paulsen I, de Marsac N, Wincker P, Dossat C (2008) Unraveling the genomic mosaic of a ubiquitous genus of marine cyanobacteria. Genome Biol 9(5):R90

    Article  PubMed  Google Scholar 

  • Edgar R (2004) Muscle: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5(1):113

    Article  PubMed  Google Scholar 

  • Fuller NJ, Marie D, Partensky F, Vaulot D, Post AF, Scanlan DJ (2003) Clade-specific 16s ribosomal DNA oligonucleotides reveal the predominance of a single marine synechococcus clade throughout a stratified water column in the red sea. Appl Environ Microbiol 69(5):2430–2443. doi:10.1128/aem.69.5.2430-2443.2003

    Article  PubMed  CAS  Google Scholar 

  • Giri BJ, Bano N, Hollibaugh JT (2004) Distribution of rubisco genotypes along a redox gradient in mono lake, California. Appl Environ Microbiol 70(6):3443–3448. doi:10.1128/aem.70.6.3443-3448.2004

    Article  PubMed  CAS  Google Scholar 

  • Gonzales MJ, Dugan JM, Shafer RW (2002) Synonymous-non-synonymous mutation rates between sequences containing ambiguous nucleotides (syn-scan). Bioinformatics 18(6):886–887

    Article  PubMed  CAS  Google Scholar 

  • Gouy M, Guindon S, Gascuel O (2010) Seaview version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27(2):221–224. doi:10.1093/molbev/msp259

    Article  PubMed  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52(5):696–704. doi:10.1080/10635150390235520

    Article  PubMed  Google Scholar 

  • Guindon S, Lethiec F, Duroux P, Gascuel O (2005) Phyml online—a web server for fast maximum likelihood-based phylogenetic inference. Nucl Acids Res 33 (Web Server Issue):W557–W559. doi:10.1093/nar/gki352

  • Hassidim M, Keren N, Ohad I, Reinhold L, Kaplan A (1997) Acclimation of synechococcus strain WH7803 to ambient CO2 concentration and to elevated light intensity. J Phycol 33(5):811–817

    Article  Google Scholar 

  • Heinhorst S, Williams EB, Cai F, Murin CD, Shively JM, Cannon GC (2006) Characterization of the carboxysomal carbonic anhydrase csosca from halothiobacillus neapolitanus. J Bacteriol 188(23):8087–8094. doi:10.1128/jb.00990-06

    Article  PubMed  CAS  Google Scholar 

  • Herdman M, Castenholz RW, Iteman I, Waterbury JB, Rippka R (2001) Subsection I (formerly chroococcales wettstein 1924, emend. Rippka, deruelles, Waterbury, herdman and stanier 1979). In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer Publishers, New York, pp 493–514

    Google Scholar 

  • Hess W, Rocap G, Ting C, Larimer F, Stilwagen S, Lamerdin J, Chisholm S (2001) The photosynthetic apparatus of prochlorococcus: insights through comparative genomics. Photosynth Res 70(1):53–71

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) Mrbayes: Bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755

    Article  PubMed  CAS  Google Scholar 

  • Ikemura T (1981) Correlation between the abundance of escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes. J Mol Biol 146(1):1–21

    Article  PubMed  CAS  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences, vol 8. Oxford Univ Press, Oxford

    Google Scholar 

  • Karagouni AD, Bloye SA, Carr NG (1990) The presence and absence of inorganic carbon concentrating systems in unicellular cyanobacteria. FEMS Microbiol Lett 68(1–2):137–141

    Article  CAS  Google Scholar 

  • Langille MGI, Brinkman FSL (2009) Islandviewer: an integrated interface for computational identification and visualization of genomic islands. Bioinformatics 25(5):664–665. doi:10.1093/bioinformatics/btp030

    Article  PubMed  CAS  Google Scholar 

  • Langille M, Hsiao W, Brinkman F (2008) Evaluation of genomic island predictors using a comparative genomics approach. BMC Bioinformatics 9(1):329

    Article  PubMed  Google Scholar 

  • Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25(7):1307

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Harrison P, Kunin V, Gerstein M (2004) Comprehensive analysis of pseudogenes in prokaryotes: widespread gene decay and failure of putative horizontally transferred genes. Genome Biol 5:R64. doi:10.1186/gb-2004-5-9-r64

  • Maeda S, Badger MR, Price GD (2002) Novel gene products associated with NdhD3/D4-containing NDH-1 complexes are involved in photosynthetic CO2 hydration in the cyanobacterium, synechococcus sp. PCC7942. Mol Microbiol 43(2):425–435

    Article  PubMed  CAS  Google Scholar 

  • Marin B, Nowack ECM, Glöckner G, Melkonian M (2007) The ancestor of the paulinella chromatophore obtained a carboxysomal operon by horizontal gene transfer from a nitrococcus-like gamma-proteobacterium. BMC Evol Biol 7(1):85

    Article  PubMed  Google Scholar 

  • Markowitz VM, Chen I-MA, Palaniappan K, Chu K, Szeto E, Grechkin Y, Ratner A, Anderson I, Lykidis A, Mavromatis K, Ivanova NN, Kyrpides NC (2009) The integrated microbial genomes system: an expanding comparative analysis resource. Nucl Acids Res 38 (Database issue):D382–D390. doi:10.1093/nar/gkp887

  • McGinn PJ, Price GD, Maleszka R, Badger MR (2003) Inorganic carbon limitation and light control the expression of transcripts related to the CO2-concentrating mechanism in the cyanobacterium synechocystis sp. Strain PCC6803. Plant Physiol 132(1):218–229. doi:10.1104/pp.019349

    Article  PubMed  CAS  Google Scholar 

  • Meyer J, Iida S, Arber W (1980) Does the insertion element IS1; transpose preferentially into A+T-rich DNA segments? Mol Gen Genet 178(2):471–473. doi:10.1007/bf00270502

    Article  PubMed  CAS  Google Scholar 

  • Nowack ECM, Melkonian M, Glöckner G (2008) Chromatophore genome sequence of paulinella sheds light on acquisition of photosynthesis by eukaryotes. Curr Biol 18(6):410–418

    Article  PubMed  CAS  Google Scholar 

  • Omata T, Price GD, Badger MR, Okamura M, Gohta S, Ogawa T (1999) Identification of an ATP-binding cassette transporter involved in bicarbonate uptake in the cyanobacterium synechococcus sp. Strain PCC. 7942. Proc Natl Acad Sci USA 96(23):13571

    Article  PubMed  CAS  Google Scholar 

  • Omata T, Gohta S, Takahashi Y, Harano Y, Maeda S-i (2001) Involvement of a CbbR homolog in low CO2-induced activation of the bicarbonate transporter operon in cyanobacteria. J Bacteriol 183(6):1891–1898. doi:10.1128/jb.183.6.1891-1898.2001

    Article  PubMed  CAS  Google Scholar 

  • Peden J (1999) Analysis of codon usage. PhD Thesis, The University of Nottingham, Nottingham, UK

  • Platt T, Li W (1986) Biological and ecological characterization of the marine unicellular cyanobacterium synechococcus. Can B Fish Aquat Sci 214:71–120

    Google Scholar 

  • Porra R, Thompson W, Kriedemann P (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls A and B extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. BBA-Bioenergetics 975(3):384–394

    Article  CAS  Google Scholar 

  • Price GD, Badger MR (1989) Ethoxyzolamide inhibition of CO2 uptake in the cyanobacterium synechococcus PCC7942 without apparent inhibition of internal carbonic anhydrase activity. Plant Physiol 89(1):37–43

    Article  PubMed  CAS  Google Scholar 

  • Price GD, Coleman JR, Badger MR (1992) Association of carbonic anhydrase activity with carboxysomes isolated from the cyanobacterium synechococcus pcc7942. Plant Physiol 100(2):784–793. doi:10.1104/pp.100.2.784

    Article  PubMed  CAS  Google Scholar 

  • Price GD, Woodger FJ, Badger MR, Howitt SM, Tucker L (2004) Identification of a sulp-type bicarbonate transporter in marine cyanobacteria. Proc Natl Acad Sci USA 101(52):18228–18233

    Article  PubMed  CAS  Google Scholar 

  • Price GD, Badger MR, Woodger FJ, Long BM (2008) Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J Exp Bot 59(7):1441

    Article  PubMed  CAS  Google Scholar 

  • Ran L, Larsson J, Vigil-Stenman T, Nylander JAA, Ininbergs K, Zheng W-W, Lapidus A, Lowry S, Haselkorn R, Bergman B (2010) Genome erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular cyanobacterium. PLoS One 5(7):e11486

    Article  PubMed  Google Scholar 

  • Rippka R, Cohen-Bazire G (1983) The cyanobacteriales: a legitimate order based on the type strain cyanobacterium stanieri? Annales de l’Institut Pasteur Microbiologie 134(1, Suppl 2):21–36

    Article  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572–1574. doi:10.1093/bioinformatics/btg180

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Baracaldo P, Handley BA, Hayes PK (2008) Picocyanobacterial community structure of freshwater lakes and the Baltic sea revealed by phylogenetic analyses and clade-specific quantitative PCR. Microbiology 154(11):3347–3357. doi:10.1099/mic.0.2008/019836-0

    Article  PubMed  CAS  Google Scholar 

  • Scanlan DJ, Ostrowski M, Mazard S, Dufresne A, Garczarek L, Hess WR, Post AF, Hagemann M, Paulsen I, Partensky F (2009) Ecological genomics of marine picocyanobacteria. Microbiol Mol Biol Rev 73(2):249–299. doi:10.1128/mmbr.00035-08

    Article  PubMed  CAS  Google Scholar 

  • Sharp PM, Li W-H (1987) The codon adaptation index-A measure of directional synonymous codon usage bias, and its potential applications. Nucl Acids Res 15(3):1281–1295. doi:10.1093/nar/15.3.1281

    Article  PubMed  CAS  Google Scholar 

  • Shibata M, Ohkawa H, Kaneko T, Fukuzawa H, Tabata S, Kaplan A, Ogawa T (2001) Distinct constitutive and low-CO2-induced CO2 uptake systems in cyanobacteria: genes involved and their phylogenetic relationship with homologous genes in other organisms. Proc Natl Acad Sci USA 98(20):11789–11794

    Article  PubMed  CAS  Google Scholar 

  • Shibata M, Katoh H, Sonoda M, Ohkawa H, Shimoyama M, Fukuzawa H, Kaplan A, Ogawa T (2002) Genes essential to sodium-dependent bicarbonate transport in cyanobacteria. Function and phylogenetic analysis. J Biol Chem 277(21):18658

    Article  PubMed  CAS  Google Scholar 

  • Shimada A, Kanai S, Maruyama T (1995) Partial sequence of ribulose-1,5-bisphosphate carboxylase/oxygenase and the phylogeny of prochloron and prochlorococcus (prochlorales). J Mol Evol 40(6):671–677

    Article  PubMed  CAS  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21):2688–2690. doi:10.1093/bioinformatics/btl446

    Article  PubMed  CAS  Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57(5):758–771. doi:10.1080/10635150802429642

    Article  PubMed  Google Scholar 

  • Sültemeyer D, Price GD, Yu J-W, Badger MR (1995) Characterisation of carbon dioxide and bicarbonate transport during steady-state photosynthesis in the marine cyanobacterium synechococcus strain PCC7002. Planta 197(4):597–607

    Article  Google Scholar 

  • Swingley WD, Blankenship RE, Raymond J (2008a) Insights into cyanobacterial evolution from comparative genomics. In: Herrero A, Flores E, Flores F (eds) The cyanobacteria: molecular biology, genomics and evolution. Academic Press, Caister, pp 21–43

    Google Scholar 

  • Swingley WD, Blankenship RE, Raymond J (2008b) Integrating markov clustering and molecular phylogenetics to reconstruct the cyanobacterial species tree from conserved protein families. Mol Biol Evol 25(4):643–654. doi:10.1093/molbev/msn034

    Article  PubMed  CAS  Google Scholar 

  • Tabita FR (1999) Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: a different perspective. Photosynth Res 60(1):1–28

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22(22):4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JAM (2007) Primer3plus, an enhanced web interface to primer3. Nucl Acids Res 35 (Web Server issue):W71-W74. doi:10.1093/nar/gkm306

  • Vernikos GS, Parkhill J (2006) Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the salmonella pathogenicity islands. Bioinformatics 22(18):2196–2203. doi:10.1093/bioinformatics/btl369

    Article  PubMed  CAS  Google Scholar 

  • Wang H-L, Postier BL, Burnap RL (2004) Alterations in global patterns of gene expression in synechocystis sp. PCC 6803 in response to inorganic carbon limitation and the inactivation of ndhR, a LysR family regulator. J Biol Chem 279(7):5739–5751. doi:10.1074/jbc.M311336200

    Article  PubMed  CAS  Google Scholar 

  • Woodger FJ, Badger MR, Price GD (2003) Inorganic carbon limitation induces transcripts encoding components of the CO2-concentrating mechanism in synechococcus sp. PCC7942 through a redox-independent pathway. Plant Physiol 133(4):2069–2080. doi:10.1104/pp.103.029728

    Article  PubMed  CAS  Google Scholar 

  • Woodger FJ, Bryant DA, Price GD (2007) Transcriptional regulation of the CO2-concentrating mechanism in a Euryhaline, coastal marine Cyanobacterium, Synechococcus sp. Strain PCC 7002. Role of NdhR/CcmR. J Bacteriol 189(9):3335–3347

    Article  PubMed  CAS  Google Scholar 

  • Wright F (1990) The effective number of codons’ used in a gene. Gene 87(1):23–29

    Article  PubMed  CAS  Google Scholar 

  • Wu M, Eisen J (2008) A simple, fast, and accurate method of phylogenomic inference. Genome Biol 9(10):R151

    Article  PubMed  Google Scholar 

  • Zhaxybayeva O, Gogarten JP, Charlebois RL, Doolittle WF, Papke RT (2006) Phylogenetic analyses of cyanobacterial genomes: quantification of horizontal gene transfer events. Genome Res 16(9):1099–1108

    Article  PubMed  CAS  Google Scholar 

  • Zhaxybayeva O, Doolittle WF, Papke RT, Gogarten JP (2009) Intertwined evolutionary histories of marine synechococcus and prochlorococcus marinus. Genome Biol Evol 0(2009):325–339

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Loraine Tucker for her technical assistance and Dr Benedict Long for helpful discussions. GDP and MRB acknowledge support from the Australian Research Council Discovery grants scheme, and BDR from the ANU PhD scholarship scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Dean Price.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1318 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rae, B.D., Förster, B., Badger, M.R. et al. The CO2-concentrating mechanism of Synechococcus WH5701 is composed of native and horizontally-acquired components. Photosynth Res 109, 59–72 (2011). https://doi.org/10.1007/s11120-011-9641-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-011-9641-5

Keywords

Navigation