Skip to main content
Log in

Substitutions at the opening of the Rubisco central solvent channel affect holoenzyme stability and CO2/O2 specificity but not activation by Rubisco activase

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the initial step of carbon metabolism in photosynthesis. The holoenzyme comprises eight large subunits, arranged as a tetramer of dimers around a central solvent channel that defines a fourfold axis of symmetry, and eight small subunits, arranged as two tetramers at the poles of the axis. The phylogenetically divergent small-subunit loops between β-strands A and B form the entrance to the solvent channel. In the green alga Chlamydomonas reinhardtii, Ile-58 from each of the four small-subunit βA–βB loops defines the minimal diameter of the channel opening. To understand the role of the central solvent channel in Rubisco function, directed mutagenesis and transformation of Chlamydomonas were employed to replace Ile-58 with Ala, Lys, Glu, Trp, or three Trp residues (I58W3) to close the entrance to the channel. The I58E, I58K, and I58W substitutions caused only small decreases in photosynthetic growth at 25 and 35 °C, whereas I58W3 had a substantial effect at both temperatures. The mutant enzymes had decreased carboxylation rates, but the I58W3 enzyme had decreases in both carboxylation and CO2/O2 specificity. The I58E, I58W, and I58W3 enzymes were inactivated at lower temperatures than wild-type Rubisco, and were degraded at slower rates under oxidative stress. However, these mutant enzymes were activated by Rubisco activase at normal rates, indicating that the structural transition required for carboxylation is not affected by altering the solvent channel opening. Structural dynamics alone may not be responsible for these distant effects on the Rubisco active site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andersson I (1996) Large structures at high resolution: the 1.6 Å crystal structure of spinach ribulose-1,5-bisphosphate carboxylase/oxygenase complexed with 2-carboxyarabinitol bisphosphate. J Mol Biol 259:160–174

    Article  CAS  PubMed  Google Scholar 

  • Andersson I, Backlund A (2008) Structure and function of Rubisco. Plant Physiol Biochem 46:275–291

    Article  CAS  PubMed  Google Scholar 

  • Andersson I, Taylor TC (2003) Structural framework for catalysis and regulation in ribulose-1,5-bisphosphate carboxylase/oxygenase. Arch Biochem Biophys 414:130–140

    Article  CAS  PubMed  Google Scholar 

  • Barta C, Carmo-Silva AE, Salvucci ME (2011a) Purification of Rubisco activase from leaves or after expression in Escherichia coli. In: Carpentier R (ed) Photosynthesis research protocols, methods in molecular biology, vol 684. Human Press, New York, pp 363–374

    Chapter  Google Scholar 

  • Barta C, Carmo-Silva AE, Salvucci ME (2011b) Rubisco activase activity assays. In: Carpentier R (ed) Photosynthesis research protocols, methods in molecular biology, vol 684. Human Press, New York, pp 375–382

    Chapter  Google Scholar 

  • Bowes G, Ogren WL, Hageman RH (1971) Phosphoglycolate production catalyzed by ribulose diphosphate carboxylase. Biochem Biophys Res Commun 45:716–722

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Carmo-Silva AE, Salvucci ME (2011) The activity of Rubisco’s molecular chaperone Rubisco activase in leaf extracts. Photosynth Res 108:143–155

    Article  CAS  PubMed  Google Scholar 

  • Chen ZX, Chastain CJ, Al-Abed SR, Chollet R, Spreitzer RJ (1988) Reduced CO2/O2 specificity of ribulose-bisphosphate carboxylase oxygenase in a temperature-sensitive chloroplast mutant of Chlamydomonas. Proc Natl Acad Sci USA 85:4696–4699

    Article  CAS  PubMed  Google Scholar 

  • Chen ZX, Hong S, Spreitzer RJ (1993) Thermal instability of ribulose-1,5-bisphosphate carboxylase/oxygenase from a temperature-conditional chloroplast mutant of Chlamydomonas reinhardtii. Plant Physiol 101:1189–1194

    Article  CAS  PubMed  Google Scholar 

  • Chua NH (1980) Electrophoretic analysis of chloroplast proteins. Methods Enzymol 69:434–446

    Article  CAS  Google Scholar 

  • Du YC, Hong S, Spreitzer RJ (2000) RbcS suppressor mutations improve the thermal stability and CO2/O2 specificity of rbcL-mutant ribulose-1,5-bisphosphate carboxylase/oxygenase. Proc Natl Acad Sci USA 97:14206–14211

    Article  CAS  PubMed  Google Scholar 

  • Duff AP, Andrews TJ, Curmi PMG (2000) The transition between the open and closed states of Rubisco is triggered by the inter-phosphate distance of the bound bisphosphate. J Mol Biol 298:903–916

    Article  CAS  PubMed  Google Scholar 

  • Esquivel MG, Pinto TS, Marín-Navarro J, Moreno J (2006) Substitution of tyrosine residues at the aromatic cluster around the βA-βB loop of rubisco small subunit affects the structural stability of the enzyme and the in vivo degradation under stress conditions. Biochemistry 45:5745–5753

    Article  CAS  PubMed  Google Scholar 

  • Genkov T, Spreitzer RJ (2009) Highly conserved small subunit residues influence Rubisco large-subunit catalysis. J Biol Chem 284:30105–30112

    Article  CAS  PubMed  Google Scholar 

  • Genkov T, Du YC, Spreitzer RJ (2006) Small-subunit cysteine-65 substitutions can suppress or induce alterations in the large-subunit catalytic efficiency and holoenzyme thermal stability of ribulose-1,5-bisphosphate carboxylase/oxygenase. Arch Biochem Biophys 451:167–174

    Article  CAS  PubMed  Google Scholar 

  • Genkov T, Meyer M, Griffiths H, Spreitzer RJ (2010) Functional hybrid Rubisco enzymes with plant small subunits and algal large subunits: engineered rbcS cDNA for expression in Chlamydomonas. J Biol Chem 285:19833–19841

    Article  CAS  PubMed  Google Scholar 

  • Hansen S, Vollan VB, Hough E, Andersen K (1999) The crystal structure of Rubisco from Alcaligenes eutrophus reveals a novel central eight-stranded β-barrel formed by β-strands from four subunits. J Mol Biol 288:609–621

    Article  CAS  PubMed  Google Scholar 

  • Hong S, Spreitzer RJ (1997) Complementing substitutions at the bottom of the barrel influence catalysis and stability of ribulose-bisphosphate carboxylase/oxygenase. J Biol Chem 272:11114–11117

    Article  CAS  PubMed  Google Scholar 

  • Ishida H, Nishimori Y, Sugisawa M, Makino A, Mae T (1997) The large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase is fragmented into 37-kDa and 16-kDa polypeptides by active oxygen in the lysates of chloroplasts from primary leaves of wheat. Plant Cell Physiol 38:471–479

    Article  CAS  PubMed  Google Scholar 

  • Jordan DB, Ogren WL (1981) A sensitive assay procedure for simultaneous determination of ribulose-1,5-bisphosphate carboxylase and oxygenase activities. Plant Physiol 67:237–245

    Article  CAS  PubMed  Google Scholar 

  • Karkehabadi S, Peddi SR, Anwaruzzaman M, Taylor TC, Cederlund A, Genkov T, Andersson I, Spreitzer RJ (2005a) Chimeric small subunits influence catalysis without causing global conformational changes in the crystal structure of ribulose-1,5-bisphosphate carboxylase/oxygenase. Biochemistry 44:9851–9861

    Article  CAS  PubMed  Google Scholar 

  • Karkehabadi S, Taylor TC, Spreitzer RJ, Andersson I (2005b) Altered intersubunit interactions in crystal structures of catalytically compromised ribulose-1,5-bisphosphate carboxylase/oxygenase. Biochemistry 44:113–120

    Article  CAS  PubMed  Google Scholar 

  • Khrebtukova I, Spreitzer RJ (1996) Elimination of the Chlamydomonas gene family that encodes the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Proc Natl Acad Sci USA 93:13689–13693

    Article  CAS  PubMed  Google Scholar 

  • Kuehn GD, Hsu TC (1978) Preparative-scale enzymic synthesis of D-[14C]ribulose-1,5-bisphosphate. Biochem J 175:909–912

    CAS  PubMed  Google Scholar 

  • Laing WA, Ogren WL, Hageman RH (1974) Regulation of soybean net photosynthetic CO2 fixation by the interaction of CO2, O2 and ribulose 1,5-diphosphate carboxylase. Plant Physiol 54:678–685

    Article  CAS  PubMed  Google Scholar 

  • Larson EM, O’Brien CM, Zhu G, Spreitzer RJ, Portis AR (1997) Specificity for activase is changed by a Pro-89 to Arg substitution in the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. J Biol Chem 272:17033–17037

    Article  CAS  PubMed  Google Scholar 

  • Long BM, Badger MR, Whitney SM, Price GD (2007) Analysis of carboxysomes from Synechococcus PCC7942 reveals multiple Rubisco complexes with carboxysomal proteins CcmM and CcaA. J Biol Chem 282:29323–29335

    Article  CAS  PubMed  Google Scholar 

  • Meyer MT, Genkov T, Skepper JN, Jouhet U, Mitchell MC, Spreitzer RJ, Griffiths H (2012) Rubisco small-subunit α-helices control pyrenoid formation in Chlamydomonas. Proc Natl Acad Sci USA 109:19474–19479

    Article  CAS  PubMed  Google Scholar 

  • Mueller-Cajar O, Stotz M, Wendler P, Hartl FU, Bracher A, Hayer-Hartl M (2011) Structure and function of the AAA + protein CbbX, a red-type Rubisco activase. Nature 479:194–199

    Article  CAS  PubMed  Google Scholar 

  • Newman J, Gutteridge S (1993) The X-ray structure of Synechococcus ribulose-bisphosphate carboxylase/oxygenase activated quaternary complex at 2.2-Å resolution. J Biol Chem 268:25876–65886

    CAS  PubMed  Google Scholar 

  • Ott CM, Smith BD, Portis AR Jr, Spreitzer RJ (2000) Activase region on chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase. Nonconservative substitution in the large subunit alters species specificity of protein interaction. J Biol Chem 275:26241–26244

    Article  CAS  PubMed  Google Scholar 

  • Papworth C, Bauer JC, Braman J, Wright DA (1996) Site-directed mutagenesis in one day with greater than 80% efficiency. Strategies 9:3–4

    Google Scholar 

  • Portis AR Jr, Li C, Wang D, Salvucci ME (2008) Regulation of Rubisco activase and its interaction with Rubisco. J Exp Bot 59:1597–1604

    Article  CAS  PubMed  Google Scholar 

  • Satagopan S, Spreitzer RJ (2004) Substitutions at the Asp-473 latch residue of Chlamydomonas ribulosebisphosphate carboxylase/oxygenase cause decreases in carboxylation efficiency and CO2/O2 specificity. J Biol Chem 279:14240–14244

    Article  CAS  PubMed  Google Scholar 

  • Schreuder HA, Knight S, Curmi PM, Andersson I, Cascio D, Branden CI, Eisenberg D (1993) Formation of the active site of ribulose-1,5-bisphosphate carboxylase/oxygenase by a disorder-order transition from the unactivated to the activated form. Proc Natl Acad Sci USA 90:9968–9972

    Article  CAS  PubMed  Google Scholar 

  • Shimogawara K, Fujiwara S, Grossman A, Usuda H (1998) High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics 148:1821–1828

    CAS  PubMed  Google Scholar 

  • Spreitzer RJ (2003) Role of the small subunit in ribulose-1,5-bisphosphate carboxylase/oxygenase. Arch Biochem Biophys 414:141–149

    Article  CAS  PubMed  Google Scholar 

  • Spreitzer RJ, Chastain CJ (1987) Heteroplasmic suppression of an amber mutation in the Chlamydomonas chloroplast gene that encodes the large subunit of ribulosebisphosphate carboxylase/oxygenase. Curr Genet 11:611–616

    Article  CAS  Google Scholar 

  • Spreitzer RJ, Mets L (1981) Photosynthesis-deficient mutants of Chlamydomonas reinhardtii with associated light-sensitive phenotypes. Plant Physiol 67:565–569

    Article  CAS  PubMed  Google Scholar 

  • Spreitzer RJ, Salvucci ME (2002) Rubisco: structure, regulatory interactions, and possibilities for a better enzyme. Annu Rev Plant Biol 53:449–475

    Article  CAS  PubMed  Google Scholar 

  • Spreitzer RJ, Jordan DB, Ogren WL (1982) Biochemical and genetic analysis of an RuBP carboxylase/oxygenase-deficient mutant and revertants of Chlamydomonas reinhardtii. FEBS Lett 148:117–121

    Article  CAS  Google Scholar 

  • Spreitzer RJ, Esquivel MG, Du YC, McLaughlin PD (2001) Alanine-scanning mutagenesis of the small-subunit βA-βB loop of chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase: substitution at Arg-71 affects thermal stability and CO2/O2 specificity. Biochemistry 40:5615–5621

    Article  CAS  PubMed  Google Scholar 

  • Spreitzer RJ, Peddi SR, Satagopan S (2005) Phylogenetic engineering at an interface between large and small subunits imparts land-plant kinetic properties to algal Rubisco. Proc Natl Acad Sci USA 102:17225–17230

    Article  CAS  PubMed  Google Scholar 

  • Sugawara H, Yamamoto H, Shibata N, Inoue T, Okada S, Miyake C, Yokota A, Yasushi K (1999) Crystal structure of carboxylase reaction-oriented ribulose-1,5-bisphosphate carboxylase/oxygenase from a thermophilic red alga, Galdieria partita. J Biol Chem 274:15655–15661

    Article  CAS  PubMed  Google Scholar 

  • Taylor TC, Backlund A, Bjorhall K, Spreitzer RJ, Andersson I (2001) First crystal structure of Rubisco from a green alga, Chlamydomonas reinhardtii. J Biol Chem 276:48159–48164

    CAS  PubMed  Google Scholar 

  • Thow G, Zhu G, Spreitzer RJ (1994) Complementing substitutions within loop regions 2 and 3 of the α/β-barrel active site influence the CO2/O2 specificity of chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase. Biochemistry 33:5109–5114

    Article  CAS  PubMed  Google Scholar 

  • van Lun M, van der Spoel D, Andersson I (2011) Subunit interface dynamics in hexadecameric Rubisco. J Mol Biol 411:1083–1098

    Article  PubMed  Google Scholar 

  • Wachter RM, Salvucci ME, Carmo-Silva AE, Barta C, Genkov T, Spreitzer RJ (2013) Activation of interspecies-hybrid Rubisco enzymes to assess different models for the Rubisco–Rubisco activase interaction. Photosynth Res. doi:10.1007/s11120-013-9827-0

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, of the United States Department of Energy through Photosynthetic Systems Grants DE-FG02-00ER15044 to R.J.S. and DE-AI02-97ER20268 to M.E.S. We acknowledge the technical assistance of Dr. Csengele Barta (USDA-ARS, Maricopa, AZ) for the Rubisco activation assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gloria Esquivel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esquivel, M.G., Genkov, T., Nogueira, A.S. et al. Substitutions at the opening of the Rubisco central solvent channel affect holoenzyme stability and CO2/O2 specificity but not activation by Rubisco activase. Photosynth Res 118, 209–218 (2013). https://doi.org/10.1007/s11120-013-9916-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-013-9916-0

Keywords

Navigation