Skip to main content
Log in

Structures and functions of the extrinsic proteins of photosystem II from different species

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

This minireview presents a summary of information available on the variety and binding properties of extrinsic proteins that form the oxygen-evolving complex of photosystem II (PSII) of cyanobacteria, red alga, diatom, green alga, euglena, and higher plants. In addition, the structure and function of extrinsic PsbO, PsbV, and PsbU proteins are summarized based on the crystal structure of thermophilic cyanobacterial PSII together with biochemical and genetic studies from various organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PSII:

Photosystem II

EDC:

1-Ethyl-3-(3-dimetylaminopropyl) carbodiimide

NHS:

N-Hydroxysuccinimide

NSP:

N-Succinimidyl propionate

GME:

Glycine methyl ester

References

  • Alizadeh S, Nechushtai R, Barber J, Nixon P (1994) Nucleotide sequence of the psbE, psbF and trnM genes from the chloroplast genome of Chlamydomonas reinhardtii. Biochim Biophys Acta 1188:439–442. doi:10.1016/0005-2728(94)90067-1

    Article  PubMed  Google Scholar 

  • Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH et al (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86. doi:10.1126/science.1101156

    Article  PubMed  CAS  Google Scholar 

  • Balint I, Bhattacharya J, Perelman A, Schatz D, Moskovitz Y, Keren N et al (2006) Inactivation of the extrinsic subunit of photosystem II, PsbU, in Synechococcus PCC 7942 results in elevated resistance to oxidative stress. FEBS Lett 580:2117–2122. doi:10.1016/j.febslet.2006.03.020

    Article  PubMed  CAS  Google Scholar 

  • Bernier M, Carpentier R (1995) The action of mercury on the binding of the extrinsic polypeptides associated with the water oxidizing complex of photosystem II. FEBS Lett 360:251–254. doi:10.1016/0014-5793(95)00101-E

    Article  PubMed  CAS  Google Scholar 

  • Berthold DA, Babcock GT, Yocum CF (1981) A highly resolved, oxygen-evolving photosystem II preparation from spinach thylakoid membranes: EPR and electron-transport properties. FEBS Lett 134:231–234. doi:10.1016/0014-5793(81)80608-4

    Article  CAS  Google Scholar 

  • Betts SD, Ross JR, Pichersky E, Yocum CF (1997) Mutation Val235Ala weakens binding of the 33-kDa manganese stabilizing protein of Photosystem II to one of two sites. Biochemistry 36:4047–4053. doi:10.1021/bi962413b

    Article  PubMed  CAS  Google Scholar 

  • Betts SD, Lydakis-Simantiris N, Ross JR, Yocum CF (1998) The carboxyl-terminal tripeptide of the manganese-stabilizing protein is required for quantitative assembly into photosystem II and high rates of oxygen evolution activity. Biochemistry 37:14230–14236. doi:10.1021/bi981305h

    Article  PubMed  CAS  Google Scholar 

  • Bricker TM, Burnap RL (2007) The extrinsic proteins of photosystem II. In: Wydrzynski TJ, Satoh K (eds) Photosystem II: the light-driven water:plastoquinone oxidoreductase. Springer, Dordrecht, pp 95–120

    Google Scholar 

  • Bricker TM, Frankel LK (1987) Use of a monoclonal antibody in structural investigations of the 49-kDa polypeptide of photosystem II. Arch Biochem Biophys 256:295–301. doi:10.1016/0003-9861(87)90449-8

    Article  PubMed  CAS  Google Scholar 

  • Bricker TM, Frankel LK (2003) Carboxylate groups on the manganese-stabilizing protein are required for efficient binding of the 24 kDa extrinsic protein to photosystem II. Biochemistry 42:2056–2061. doi:10.1021/bi020652v

    Article  PubMed  CAS  Google Scholar 

  • Bricker TM, Odom WR, Queirolo CB (1988) Close association of the 33 kDa extrinsic protein with the apoprotein of CPa1 in photosystem II. FEBS Lett 231:111–117. doi:10.1016/0014-5793(88)80713-0

    Article  CAS  Google Scholar 

  • Bricker TM, Young A, Frankel LK, Putnam-Evans C (2002) Introduction of the 305Arg → 305Ser mutation in the large extrinsic loop E of the CP43 protein of Synechocystis sp. PCC 6803 leads to the loss of cytochrome c 550 binding to Photosystem II. Biochim Biophys Acta 1556:92–96. doi:10.1016/S0005-2728(02)00367-5

    Article  PubMed  CAS  Google Scholar 

  • Burnap RL, Sherman L (1991) Deletion mutagenesis in Synechocystis sp. PCC 6803 indicates that the Mn-stabilizing protein of photosystem II is not essential for O2 evolution. Biochemistry 30:440–446. doi:10.1021/bi00216a020

    Article  PubMed  CAS  Google Scholar 

  • Burnap RL, Qian M, Shen JR, Inoue Y, Sherman LA (1994) Role of disulfide linkage and putative intermolecular binding residues in the stability and binding of the extrinsic proteins to the Photosystem II reaction center. Biochemistry 33:13712–13718. doi:10.1021/bi00250a023

    Article  PubMed  CAS  Google Scholar 

  • De Las Rivas J, Barber J (2004) Analysis of the structure of the PsbO protein and its implications. Photosynth Res 81:329–343. doi:10.1023/B:PRES.0000036889.44048.e4

    Article  PubMed  Google Scholar 

  • de Vitry C, Olive J, Drapier D, Recouvreur M, Wollman FA (1989) Posttranslational events leading to the assembly of photosystem II protein complex: a study using photosynthesis mutants from Chlamydomonas reinhardtii. J Cell Biol 109:991–1006. doi:10.1083/jcb.109.3.991

    Article  PubMed  Google Scholar 

  • Debus RJ (2007) The catalytic manganese cluster: protein ligation. In: Wydrzynski TJ, Satoh K (eds) Photosystem II: the light-driven water:plastoquinone oxidoreductase. Springer, Dordrecht, pp 261–284

    Google Scholar 

  • Eaton-Rye JJ, Murata N (1989) Evidence that the amino-terminus of the 33 kDa extrinsic protein is required for binding to the Photosystem II complex. Biochim Biophys Acta 977:219–226. doi:10.1016/S0005-2728(89)80075-1

    Article  PubMed  CAS  Google Scholar 

  • Eaton-Rye JJ, Shand JA, Nicoll WS (2003) pH-dependent photoautotrophic growth of specific photosystem II mutants lacking lumenal extrinsic polypeptides in Synechocystis PCC 6803. FEBS Lett 543:148–153. doi:10.1016/S0014-5793(03)00432-0

    Article  PubMed  CAS  Google Scholar 

  • Enami I, Satoh K, Katoh S (1987) Crosslinking between the 33 kDa extrinsic protein and the 47 kDa chlorophyll-carrying protein of the PSII reaction center core complex. FEBS Lett 226:161–165. doi:10.1016/0014-5793(87)80571-9

    Article  CAS  Google Scholar 

  • Enami I, Kamino K, Shen JR, Satoh K, Katoh S (1989a) Isolation and characterization of photosystem II complexes which lack light-harvesting chlorophyll a/b proteins but retain three extrinsic proteins related to oxygen evolution from spinach. Biochim Biophys Acta 977:33–39. doi:10.1016/S0005-2728(89)80006-4

    Article  CAS  Google Scholar 

  • Enami I, Miyaoka T, Mochizuki Y, Shen JR, Satoh K, Katoh S (1989b) Nearest neighbor relationships among constituent proteins of oxygen-evolving Photosystem II membranes: binding and function of the extrinsic proteins. Biochim Biophys Acta 973:35–40. doi:10.1016/S0005-2728(89)80399-8

    Article  CAS  Google Scholar 

  • Enami I, Mochizuki Y, Takahashi S, Kakuno T, Horio T, Satoh K et al (1990) Evidence from crosslinking for nearest-neighbor relationships among the three extrinsic proteins of spinach photosystem II complexes that are associated with oxygen evolution. Plant Cell Physiol 31:725–729

    CAS  Google Scholar 

  • Enami I, Kaneko M, Kitamura N, Koike H, Sonoike K, Inoue Y et al (1991) Total immobilization of the extrinsic 33 kDa protein in spinach photosystem II membrane preparations. Protein stoichiometry and stabilization of oxygen evolution. Biochim Biophys Acta 1060:224–232

    Article  CAS  Google Scholar 

  • Enami I, Ohta S, Mitsuhashi S, Takahashi S, Ikeuchi M, Katoh S (1992) Evidence from crosslinking for a close association of the extrinsic 33 kDa protein with the 9.4 kDa subunit of cytochrome b559 and the 4.8 kDa product of psbI gene in oxygen-evolving photosystem II complexes from spinach. Plant Cell Physiol 33:291–297

    CAS  Google Scholar 

  • Enami I, Kitamura M, Tomo T, Isokawa Y, Ohta H, Katoh S (1994a) Is the primary cause of thermal inactivation of oxygen evolution in spinach PSII membranes release of the extrinsic 33 kDa protein or of Mn? Biochim Biophys Acta 1186:52–58. doi:10.1016/0005-2728(94)90134-1

    Article  CAS  Google Scholar 

  • Enami I, Tomo T, Kitamura M, Katoh S (1994b) Immobilization of the three extrinsic proteins in spinach oxygen-evolving photosystem II membranes: roles of the proteins in stabilization of binding of Mn and Ca2+. Biochim Biophys Acta 1185:75–80. doi:10.1016/0005-2728(94)90195-3

    Article  CAS  Google Scholar 

  • Enami I, Murayama H, Ohta H, Kamo M, Nakazato K, Shen JR (1995) Isolation and characterization of a Photosystem II complex from the red alga Cyanidium caldarium: association of cytochrome c-550 and a 12 kDa protein with the complex. Biochim Biophys Acta 1232:208–216. doi:10.1016/0005-2728(95)00122-0

    Article  PubMed  Google Scholar 

  • Enami I, Tohri A, Kamo M, Ohta H, Shen JR (1997) Identification of domains on the 43 kDa chlorophyll-carrying protein (CP43) that are shielded from tryptic attack by binding of the extrinsic 33 kDa protein with photosystem II complex. Biochim Biophys Acta 1320:17–26. doi:10.1016/S0005-2728(97)00005-4

    Article  PubMed  CAS  Google Scholar 

  • Enami I, Kamo M, Ohta H, Takahashi S, Miura T, Kusayanagi M et al (1998a) Intramolecular cross-linking of the extrinsic 33-kDa protein leads to loss of oxygen evolution but not its ability of binding to photosystem II and stabilization of the manganese cluster. J Biol Chem 273:4629–4634. doi:10.1074/jbc.273.8.4629

    Article  PubMed  CAS  Google Scholar 

  • Enami I, Kikuchi S, Fukuda T, Ohta H, Shen JR (1998b) Binding and functional properties of four extrinsic proteins of photosystem II from a red alga, Cyanidium caldarium, as studied by release-reconstitution experiments. Biochemistry 37:2787–2793. doi:10.1021/bi9724624

    Article  PubMed  CAS  Google Scholar 

  • Enami I, Yoshihara S, Tohri A, Okumura A, Ohta H, Shen JR (2000) Cross-reconstitution of various extrinsic proteins and photosystem II complexes from cyanobacteria, red alga and higher plant. Plant Cell Physiol 41:1354–1364. doi:10.1093/pcp/pcd069

    Article  PubMed  CAS  Google Scholar 

  • Enami I, Iwai M, Akiyama A, Suzuki T, Okumura A, Katoh T et al (2003) Comparison of binding and functional properties of two extrinsic components, Cyt c550 and a 12 kDa protein, in cyanobacterial PSII with those in red algal PSII. Plant Cell Physiol 44:820–827. doi:10.1093/pcp/pcg106

    Article  PubMed  CAS  Google Scholar 

  • Enami I, Suzuki T, Tada O, Nakada Y, Nakamura K, Tohri A et al (2005) Distribution of the extrinsic proteins as a potential marker for the evolution of photosynthetic oxygen-evolving photosystem II. FEBS J 272:5020–5030. doi:10.1111/j.1742-4658.2005.04912.x

    Article  PubMed  CAS  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838. doi:10.1126/science.1093087

    Article  PubMed  CAS  Google Scholar 

  • Frankel LK, Bricker TM (1990) Mapping of NHS-biotinylation sites and the epitope of the monoclonal antibody FAC2 on the apoprotein of CPa-1. In: Baltschffsky M (ed) Current research in photosynthesis, vol I. Kluwer Academic Publishers, Dordrecht, pp 639–642

    Google Scholar 

  • Frankel LK, Bricker TM (1992) Interaction of CPa-1 with the manganese-stabilizing protein of photosystem II: identification of domains on CPa-1 which are shielded from N-hydroxysuccinimide biotinylation by the manganese-stabilizing protein. Biochemstry 31:11059–11063. doi:10.1021/bi00160a015

    Article  CAS  Google Scholar 

  • Frankel LK, Bricker TM (1995) Interaction of the 33-kDa extrinsic protein with Photosystem II: identification of domains on the 33-kDa protein that are shielded from NHS-biotinylation by photosystem II. Biochemistry 34:7492–7497. doi:10.1021/bi00022a024

    Article  PubMed  CAS  Google Scholar 

  • Frankel LK, Cruz JA, Bricker TM (1999) Carboxylate groups on the manganese-stabilizing protein are required for its efficient binding to photosystem II. Biochemistry 38:14275–14278. doi:10.1021/bi991366v

    Article  CAS  Google Scholar 

  • Frazão C, Enguita FJ, Coelho R, Sheldrick GM, Navarro JA, Hervás M et al (2001) Crystal structure of low potential cytochrome c549 from Synechocystis sp. PCC 6803 at 1.21 Å resolution. J Biol Inorg Chem 6:324–332. doi:10.1007/s007750100208

    Article  PubMed  Google Scholar 

  • Gleiter HM, Haag E, Shen JR, Eaton-Rye JJ, Inoue Y, Vermaas WF et al (1994) Functional characterization of mutant strains of the cyanobacterium Synechocystis PCC 6803 lacking short domains within the large, lumen-exposed loop of the chlorophyll protein CP47 in photosystem II. Biochemistry 33:12063–12071. doi:10.1021/bi00206a008

    Article  PubMed  CAS  Google Scholar 

  • Han KC, Shen JR, Ikeuchi M, Inoue Y (1994) Chemical crosslinking studies of extrinsic proteins in cyanobacterial photosystem II. FEBS Lett 355:121–124. doi:10.1016/0014-5793(94)01182-6

    Article  PubMed  CAS  Google Scholar 

  • Hayashi H, Fujimura Y, Mohanty PS, Murata N (1993) The role of CP47 in the evolution of oxygen and the binding of the extrinsic 33-kDa protein to the core complex of Photosystem II as determined by limited proteolysis. Photosynth Res 36:35–42. doi:10.1007/BF00018073

    Article  CAS  Google Scholar 

  • Hermann RG, Alt J, Schiller B, Widger WR, Cramer WA (1984) Nucleotide sequence of the gene for apocytochrome b-559 on the spinach plastid chromosome: implications for the structure of the membrane protein. FEBS Lett 176:239–244. doi:10.1016/0014-5793(84)80949-7

    Article  Google Scholar 

  • Ikeuchi M, Inoue Y (1988) A new photosystem II reaction center component (4.8 kDa protein) encoded by chloroplast genome. FEBS Lett 241:99–104. doi:10.1016/0014-5793(88)81039-1

    Article  PubMed  CAS  Google Scholar 

  • Inoue-Kashino N, Kashino Y, Satoh K, Terashima I, Pakrasi HB (2005) PsbU provides a stable architecture for the oxygen-evolving system in cyanobacterial photosystem II. Biochemistry 44:12214–12228. doi:10.1021/bi047539k

    Article  PubMed  CAS  Google Scholar 

  • Ishihara S, Takabayashi A, Ido K, Endo T, Ifuku K, Sato F (2007) Distinct functions for the two PsbP-like proteins PPL1 and PPL2 in the chloroplast thylakoid lumen of Arabidopsis. Plant Physiol 145:668–679. doi:10.1104/pp. 107.105866

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa Y, Yamamoto Y, Otsubo M, Theg SM, Tamura N (2002) Chemical modification of amine groups on PSII protein(s) retards photoassembly of the photosynthetic water-oxidizing complex. Biochemstry 41:1972–1980. doi:10.1021/bi0102499

    Article  CAS  Google Scholar 

  • Isogai Y, Yamamoto Y, Nishimura M (1985) Association of the 33 kDa polypeptide with the 43 kDa component in Photosystem II particles. FEBS Lett 187:240–244. doi:10.1016/0014-5793(85)81250-3

    Article  CAS  Google Scholar 

  • Kamiya N, Shen JR (2003) Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7-Å resolution. Proc Natl Acad Sci USA 100:98–103. doi:10.1073/pnas.0135651100

    Article  PubMed  CAS  Google Scholar 

  • Kashino Y, Lauber WM, Carroll JA, Wang Q, Whitmarsh J, Satoh K et al (2002) Proteomic analysis of a highly active photosystem II preparation from the cyanobacterium Synechocystis sp. PCC 6803 reveals the presence of novel polypeptides. Biochemistry 41:8004–8012. doi:10.1021/bi026012+

    Article  PubMed  CAS  Google Scholar 

  • Kashino Y, Takahashi T, Inoue-Kashino N, Ban A, Ikeda Y, Satoh K et al (2007) Ycf12 is a core subunit in the photosystem II complex. Biochim Biophys Acta 1767:1269–1275. doi:10.1016/j.bbabio.2007.08.008

    Article  PubMed  CAS  Google Scholar 

  • Kerfeld CA, Sawaya MR, Bottin H, Tran KT, Sugiura M, Cascio D et al (2003) Structural and EPR characterization of the soluble form of Cytochrome c-550 and of the psbV2 gene product from the cyanobacterium Thermosynechococcus elongatus. Plant Cell Physiol 44:697–706. doi:10.1093/pcp/pcg084

    Article  PubMed  CAS  Google Scholar 

  • Koike H, Inoue Y (1985) Properties of a peripheral 34 kDa protein in Synechococcus vulcanus photosystem II particles. Its exchangeability with spinach 33 kDa protein in reconstitution of O2 evolution. Biochim Biophys Acta 807:64–73. doi:10.1016/0005-2728(85)90053-2

    Article  CAS  Google Scholar 

  • Kuwabara T, Murata N (1982) Inactivation of photosynthetic oxygen evolution and concomitant release of three polypeptides in the photosystem II particles of spinach chloroplasts. Plant Cell Physiol 23:533–539

    CAS  Google Scholar 

  • Leuschner C, Bricker TM (1996) Interaction of the 33 kDa extrinsic protein with Photosystem II: Rebinding of the 33 kDa extrinsic protein to Photosystem II membranes which contain four, two, or zero manganese per photosystem II reaction center. Biochemistry 35:4551–4557. doi:10.1021/bi9522615

    Article  PubMed  CAS  Google Scholar 

  • Li ZL, Burnap RL (2001) Mutations of arginine 64 within the putative Ca2+-binding lumenal interherical a-b loop of the photosystem II D1 protein disrupt binding of the manganese stabilizing protein and cytochrome c 550 in Synechocystis sp. PCC6803. Biochemistry 40:10350–10359. doi:10.1021/bi0100135

    Article  PubMed  CAS  Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438:1040–1044. doi:10.1038/nature04224

    Article  PubMed  CAS  Google Scholar 

  • Lydakis-Simantiris N, Betts SD, Yocum CF (1999a) Leucine245 is a critical residue for folding and function of the manganese-stabilizing protein of Photosystem II. Biochemistry 38:15528–15535. doi:10.1021/bi991599m

    Article  PubMed  CAS  Google Scholar 

  • Lydakis-Simantiris N, Hutchison RS, Betts SD, Barry BA, Yocum CF (1999b) Manganese stabilizing protein of Photosystem II is a thermostable, natively unfolded polypeptide. Biochemistry 38:404–414. doi:10.1021/bi981847z

    Article  PubMed  CAS  Google Scholar 

  • Mayfield SP, Schirmer-Rahire M, Frank G, Zuber H, Rochaix JD (1989) Analysis of the genes of the OEE1 and OEE3 proteins of the photosystem II complex from Chlamydomonas reinhardtii. Plant Mol Biol 12:683–693. doi:10.1007/BF00044159

    Article  CAS  Google Scholar 

  • Mei R, Green JP, Sayre RT, Frasch WD (1989) Manganese-binding proteins of the oxygen-evolving complex. Biochemstry 28:5560–5567. doi:10.1021/bi00439a033

    Article  CAS  Google Scholar 

  • Miura K, Shimazu T, Motoki A, Kanai S, Hirano M, Katoh S (1993) Nucleotide sequence of the Mn-stabilizing protein gene of the thermophilic cyanobacterium Synechococcus elongatus. Biochim Biophys Acta 1172:357–360

    PubMed  CAS  Google Scholar 

  • Miura T, Shen JR, Takahashi S, Kamo M, Nakamura E, Ohta H et al (1997) Identification of domains on the extrinsic 33-kDa protein possibly involved in electrostatic interaction with photosystem II complex by means of chemical modification. J Biol Chem 272:3788–3798. doi:10.1074/jbc.272.10.6128

    Article  PubMed  CAS  Google Scholar 

  • Miyao M, Murata N (1989) The mode of binding of three extrinsic proteins of 33 kDa, 23 kDa and 18 kDa in photosystem II complex of spinach. Biochim Biophys Acta 977:315–321. doi:10.1016/S0005-2728(89)80086-6

    Article  CAS  Google Scholar 

  • Motoki A, Shimazu T, Hirano M, Katoh S (1998) Two regions of the Mn-stabilizing protein from Synechococcus elongatus that are involved in binding to photosystem II complexes. Biochim Biophys Acta 1365:492–502. doi:10.1016/S0005-2728(98)00102-9

    Article  PubMed  CAS  Google Scholar 

  • Motoki A, Usui M, Shimazu T, Hirano M, Katoh S (2002) A domain of the manganese-stabilizing protein from Synechococcus elongatus involved in functional binding to photosystem II. J Biol Chem 277:14747–14756. doi:10.1074/jbc.M100766200

    Article  PubMed  CAS  Google Scholar 

  • Müh F, Renger T, Zouni A (2008) Crystal structure of cyanobacterial photosystem II at 3.0 Å resolution: a closer look at the antenna system and the small membrane-intrinsic subunits. Plant Physiol Biochem 46:238–264. doi:10.1016/j.plaphy.2008.01.003

    Article  PubMed  CAS  Google Scholar 

  • Murata N, Miyao M, Omata T, Matsunami H, Kuwabara T (1984) Stoichiometry of components in the photosynthetic oxygen evolution system of photosystem II particles prepared with Triton X-100 from spinach chloroplast. Biochim Biophys Acta 765:363–369. doi:10.1016/0005-2728(84)90177-4

    Article  CAS  Google Scholar 

  • Nagao R, Ishii A, Tada O, Suzuki T, Dohmae N, Okumura A et al (2007) Isolation and characterization of oxygen-evolving thylakoid membranes and Photosystem II particles from a marine diatom Chaetoceros gracilis. Biochim Biophys Acta 1767:1353–1362. doi:10.1016/j.bbabio.2007.10.007

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama Y, Hayashi H, Watanabe T, Murata N (1994) Photosynthetic oxygen evolution is stabilized by cytochrome c550 against heat inactivation in Synechococcus sp PCC 7002. Plant Physiol 105:1313–1319. doi:10.1104/pp. 105.4.1313

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama Y, Los DA, Murata N (1999) PsbU, a protein associated with Photosystem II, is required for the acquisition of cellular thermotolerance in Synechococcus species PCC 7002. Plant Physiol 120:301–308. doi:10.1104/pp. 120.1.301

    Article  PubMed  CAS  Google Scholar 

  • Odom WR, Bricker TM (1992) Interaction of CPa-1 with the manganese-stabilizing protein of Photosystem II: Identification of domains crosslinked by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide. Biochemistry 31:5616–5620. doi:10.1021/bi00139a027

    Article  PubMed  CAS  Google Scholar 

  • Ohta H, Yoshida N, Sano M, Hirano M, Nakazato K, Enami I (1995) Evidence for electrostatic interaction of the loop A on CP47 with the extrinsic 33 kDa protein. In: Mathis P (ed) Photosynthesis: from light to biosphere, vol II. Kluwer Academic Publishers, Dordrecht, pp 361–364

    Google Scholar 

  • Ohta H, Suzuki T, Ueno M, Okumura A, Yoshihara S, Shen JR et al (2003) Extrinsic proteins of photosystem II: an intermediate member of PsbQ protein family in red algal PS II. Eur J Biochem 270:4156–4163. doi:10.1046/j.1432-1033.2003.03810.x

    Article  PubMed  CAS  Google Scholar 

  • Okumura A, Ohta H, Inoue Y, Enami I (2001) Identification of functional domains of the extrinsic 12 kDa protein in red algal PSII by limited proteolysis and directed mutagenesis. Plant Cell Physiol 42:1331–1337. doi:10.1093/pcp/pce170

    Article  PubMed  CAS  Google Scholar 

  • Okumura A, Sano M, Suzuki T, Tanaka H, Nagao R, Nakazato K et al (2007) Aromatic structure of tyrosine-92 in the extrinsic PsbU protein of red algal photosystem II is important for its functioning. FEBS Lett 581:5255–5258

    Article  PubMed  CAS  Google Scholar 

  • Ono T, Inoue Y (1984) Ca+2-denpendant restoration of O2-evolving activity in CaCl2-washed Photosystem II particles depleted of 33, 24, and 16 kDa polypeptides. FEBS Lett 168:281–286. doi:10.1016/0014-5793(84)80263-X

    Article  CAS  Google Scholar 

  • Oudot-Le Secq MP, Grimwood J, Shapiro H, Armbrust EV, Bowler C, Green BR (2007) Chloroplast genomes of the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana: comparison with other plastid genomes of the red lineage. Mol Genet Genomics 277:427–439. doi:10.1007/s00438-006-0199-4

    Article  PubMed  CAS  Google Scholar 

  • Popelkova H, Im MM, Yocum CF (2002) N-terminal truncations of manganese stabilizing protein identify two amino acid sequences required for binding of the eukaryotic protein to photosystem II and reveal the absence of one binding-related sequence in cyanobacteria. Biochemistry 41:10038–10045. doi:10.1021/bi020228u

    Article  PubMed  CAS  Google Scholar 

  • Popelkova H, Wyman A, Yocum CF (2003) Amino acid sequences and solution structures of manganese stabilizing protein that affect reconstitution of photosystem II activity. Photosynth Res 77:21–34. doi:10.1023/A:1024970926655

    Article  PubMed  CAS  Google Scholar 

  • Putnam-Evans C, Bricker TM (1992) Site-directed mutagenesis of the CPa-1 protein of photosystem II: alteration of the basic residue pair 384, 385R to 384, 385G leads to a defect associated with the oxygen-evolving complex. Biochemistry 31:11482–11488. doi:10.1021/bi00161a029

    Article  PubMed  CAS  Google Scholar 

  • Putnam-Evans C, Burnap R, Wu J, Whitmarsh J, Bricker TM (1996) Site-directed mutagenesis of the CP47 protein of photosystem II: alteration of conserved charged residues in the domain 364E–444R. Biochemistry 35:4046–4053. doi:10.1021/bi952661s

    Article  PubMed  CAS  Google Scholar 

  • Roose JL, Kashino Y, Pakrasi HB (2007a) The PsbQ protein defines cyanobacterial photosystem II complexes with highest activity and stability. Proc Natl Acad Sci USA 104:2548–2553. doi:10.1073/pnas.0609337104

    Article  PubMed  CAS  Google Scholar 

  • Roose JL, Wegener KM, Pakrasi HB (2007b) The extrinsic proteins of photosystem II. Photosynth Res 92:369–387. doi:10.1007/s11120-006-9117-1

    Article  PubMed  CAS  Google Scholar 

  • Sawaya MR, Krogmann DW, Serag A, Ho KK, Yeates TO, Kerfeld CA (2001) Structures of cytochrome c 449 and cytochrome c 6 from the cyanobacterium Arthrospira maxima. Biochemistry 40:9215–9225. doi:10.1021/bi002679p

    Article  PubMed  CAS  Google Scholar 

  • Seidler A (1994) Introduction of a histidine tail at the N-terminus of a secretory protein expressed in E. coli. Protein Eng 7:1277–1280. doi:10.1093/protein/7.10.1277

    Article  PubMed  CAS  Google Scholar 

  • Seidler A (1996) The extrinsic polypeptides of photosystem II. Biochim Biophys Acta 1277:35–60. doi:10.1016/S0005-2728(96)00102-8

    Article  PubMed  Google Scholar 

  • Shen JR, Inoue Y (1993a) Binding and functional properties of two new extrinsic components, cytochrome c-550 and a 12 kDa protein, in cyanobacterial photosystem II. Biochemistry 32:1825–1832. doi:10.1021/bi00058a017

    Article  PubMed  CAS  Google Scholar 

  • Shen JR, Inoue Y (1993b) Cellular localization of cytochrome c-550. Its specific association with cyanobacterial photosystem II. J Biol Chem 268:20408–20413

    PubMed  CAS  Google Scholar 

  • Shen JR, Ikeuchi M, Inoue Y (1992) Stoichiometric association of extrinsic cytochrome c550 and 12 kDa protein with a highly purified oxygen-evolving photosystem II core complex from Synechococcus vulcanus. FEBS Lett 301:145–149. doi:10.1016/0014-5793(92)81235-E

    Article  PubMed  CAS  Google Scholar 

  • Shen JR, Burnap RL, Inoue Y (1995a) An independent role of cytochrome c-550 in cyanobacterial photosystem II as revealed by double-deletion mutagenesis of the psbO and psbV genes in Synechocystis sp. PCC 6803. Biochemistry 34:12661–12668. doi:10.1021/bi00039a023

    Article  PubMed  CAS  Google Scholar 

  • Shen JR, Vermaas W, Inoue Y (1995b) The role of cytochrome c-550 as studied through reverse genetics and mutant characterization in Synechocystis sp. PCC 6803. J Biol Chem 270:6901–6907. doi:10.1074/jbc.270.12.6901

    Article  PubMed  CAS  Google Scholar 

  • Shen JR, Ikeuchi M, Inoue Y (1997) Analysis of the psbU gene encoding the 12 kDa extrinsic protein of photosystem II and studies on its role by deletion mutagenesis in Synechocystis sp. PCC 6803. J Biol Chem 272:17821–17826. doi:10.1074/jbc.272.28.17821

    Article  PubMed  CAS  Google Scholar 

  • Shen JR, Qian M, Inoue Y, Burnap RL (1998) Functional characterization of Synechocystis sp. PCC 6803 ∆psbU and ∆psbV mutants reveals important roles of cytochrome c-550 in cyanobacterial PSII. Biochemistry 37:1551–1558. doi:10.1021/bi971676i

    Article  PubMed  CAS  Google Scholar 

  • Shen JR, Henmi T, Kamiya N (2008) Structure and function of photosystem II. In: Fromme F (ed) Photosynthetic protein complexes, a structural approach. Wiley-VCH, Weinheim

    Google Scholar 

  • Shigemori Y, Inagaki J, Mori H, Nishimura M, Takahashi S, Yamamoto Y (1994) The presequence of the precursor to the nucleus-encoded 30 kDa protein of photosystem II in Euglena gracilis Z induces two hydrophobic domains. Plant Mol Biol 24:209–215. doi:10.1007/BF00040587

    Article  PubMed  CAS  Google Scholar 

  • Summerfield TC, Shand JA, Bentley FK, Eaton-Rye JJ (2005) PsbQ (Sll1638) in Synechocystis sp. PCC 6803 is required for photosystem II activity in specific mutants and in nutrient-limiting conditions. Biochemistry 44:805–815. doi:10.1021/bi048394k

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Minagawa J, Tomo T, Sonoike K, Ohta H, Enami I (2003) Binding and functional properties of the extrinsic proteins in oxygen-evolving photosystem II particle from a green alga, Chlamydomonas reinhardtii having his-tagged CP47. Plant Cell Physiol 44:76–84. doi:10.1093/pcp/pcg010

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Tada O, Makimura M, Tohri A, Ohta H, Yamamoto Y et al (2004) Isolation and characterization of oxygen-evolving photosystem II complexes retaining the PsbO, P and Q proteins from Euglena gracilis. Plant Cell Physiol 45:1168–1175. doi:10.1093/pcp/pch131

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Ohta H, Enami I (2005) Cross-reconstitution of the extrinsic proteins and Photosystem II complexes from Chlamydomonas reinhardtii and Spinacia oleracea. Photosynth Res 84:239–244. doi:10.1007/s11120-004-7760-y

    Article  PubMed  CAS  Google Scholar 

  • Thornton LE, Ohkawa H, Roose JL, Kashino Y, Keren N, Pakrasi HB (2004) Homologs of plant PsbP and PsbQ proteins are necessary for regulation of photosystem II activity in the cyanobacterium Synechocystis 6803. Plant Cell 16:2164–2175. doi:10.1105/tpc.104.023515

    Article  PubMed  CAS  Google Scholar 

  • Tohri A, Suzuki T, Okuyama S, Kamino K, Motoki A, Hirano M et al (2002) Comparison of the structure of the extrinsic 33 kDa protein from different organisms. Plant Cell Physiol 43:429–439. doi:10.1093/pcp/pcf053

    Article  PubMed  CAS  Google Scholar 

  • Tohri A, Dohmae N, Suzuki T, Ohta H, Inoue Y, Enami I (2004) Identification of domains on the extrinsic 23 kDa protein possibly involved in electrostatic interaction with the extrinsic 33 kDa protein in spinach photosystem II. Eur J Biochem 271:962–971. doi:10.1111/j.1432-1033.2004.03998.x

    Article  PubMed  CAS  Google Scholar 

  • Tyagi A, Hermans J, Steppuhn J, Jansson C, Vater F, Herrmann RG (1987) Nucleotide sequence of cDNA clones encoding the complete “33 kDa” precursor protein associated with the photosynthetic oxygen-evolving complex from spinach. Mol Gen Genet 207:288–293. doi:10.1007/BF00331591

    Article  CAS  Google Scholar 

  • Veerman J, Bentley FK, Eaton-Rye JJ, Mullineaux CW, Vasil’ev S, Bruce D (2005) The PsbU subunit of photosystem II stabilizes energy transfer and primary photochemistry in the phycobilisome-photosystem II assembly of Synechocystis sp PCC 6803. Biochemistry 44:16939–16948. doi:10.1021/bi051137a

    Article  PubMed  CAS  Google Scholar 

  • Whitmarsh J, Pakrasi HB (1996) Form and function of cytochrome b559. In: Ort DR, Yocum CF (eds) Photosynthesis: the light reactions. Kluwer Academic Publishers, Dordrecht, pp 249–264

    Google Scholar 

  • Yamamoto Y, Doi M, Tamura N, Nishimura M (1981) Release of polypeptides from highly active O2-evolving photosystem-2 preparation by Tris treatment. FEBS Lett 133:265–268. doi:10.1016/0014-5793(81)80520-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isao Enami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enami, I., Okumura, A., Nagao, R. et al. Structures and functions of the extrinsic proteins of photosystem II from different species. Photosynth Res 98, 349–363 (2008). https://doi.org/10.1007/s11120-008-9343-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-008-9343-9

Keywords

Navigation