Skip to main content
Log in

Modeling local terrain attributes in landscape-scale site-specific data using spatially lagged independent variable via cross regression

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Analysis methods for landscape-scale site-specific agricultural datasets have been adapted from a wide range of quantitative disciplines. Due to spatial effects expected at landscape scales with respect to yield affecting factors, inference from aspatial analyses may lead to inefficient statistical inference. When spatial correlation exists within a random variable e.g. explanatory variables such as elevation or soil characteristics, spatial statistical methods can provide unbiased and efficient estimates on which to base economic analyses and farm management decisions. Simple continuous terrain variables derived from spatially lagged independent variable transformation of relative terrain position allowed models to be estimated using familiar linear aspatial models without introducing the problems associated with interpolated data in inferential spatial statistics. Using site-specific data from three example fields, cross regressive elevation variables complemented topographic attributes, rather than replacing them in a range of statistical models. Results indicated that cross regressive elevation variables, especially relative elevation, reduced estimation problems due to correlation among independent variables and bias arising from spatially interpolated data in statistical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anselin, L. (1988). Spatial econometrics: Methods and models. Dordrecht, Netherlands: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Anselin, L. (2001). Spatial effects in econometric practice in environmental and resource economics. American Journal of Agricultural Economics, 83(3), 705–710.

    Article  Google Scholar 

  • Anselin, L. (2002). Under the hood issues in the specification and interpretation of spatial regression models. Agricultural Economics., 27(3), 247–267.

    Article  Google Scholar 

  • Anselin, L., Bongiovanni, R., & Lowenberg-DeBoer, J. (2004). A spatial econometric approach to the economics of site-specific nitrogen management in corn production. American Journal of Agricultural Economics, 86(3), 675–687.

    Article  Google Scholar 

  • Arbia, G. (2014). A primer for spatial econometrics with applications in R. New York, NY, USA: Palgrave MacMillan.

    Google Scholar 

  • Bell, K. P., & Bockstael, N. E. (2000). Applying the generalized-moment estimation approach to spatial problems involving micro-level data. The Review of Economics and Statistics, 82(1), 72–82.

    Article  Google Scholar 

  • Bishop, T. F. A., & McBratney, A. B. (2002). Creating field extent digital elevation models for precision agriculture. Precision Agriculture, 3(1), 37–46.

    Article  Google Scholar 

  • Clark, R. L., & Lee, R. (1998). Development of topographic maps for precision farming with kinematic GPS. Transactions of the ASAE, 41(4), 909–916.

    Article  Google Scholar 

  • Cliff, A. D., & Ord, J. K. (1981). Spatial processes: Models and applications. London, UK: Pion Limited.

    Google Scholar 

  • Coble, K., Ferrell, S. L., Mishra, A., & Griffin, T. W. (2018). Big data in agriculture: A challenge for the future. Applied Economics Perspectives and Policy, 40(1), 79–96.

    Article  Google Scholar 

  • Dubin, R. A. (2003). Robustness of spatial autocorrelation specifications: Some Monte Carlo evidence. Journal of Regional Science, 43, 221–248.

    Article  Google Scholar 

  • Florax, R., & Folmer, H. (1992). Specification and estimation of spatial linear regression models: Monte Carlo evaluation of pre-test estimators. Regional Science and Urban Economics, 22, 405–432.

    Article  Google Scholar 

  • Florax, R. J. G. M., Voortman, R. L., & Brouwer, J. (2002). Spatial dimensions of precision agriculture: A spatial econometric analysis of Millet yield on Sahelian Coversands. Agricultural Economics., 27(3), 425–443.

    Article  Google Scholar 

  • Garrido, M. S., de Lacy, M. C., Ramos, M. I., Borque, M. J., & Susi, M. (2019). Assessing the accuracy of NRTK altimetric positioning for precision agriculture: Test results in an olive grove environment in Southeast Spain. Precision Agriculture, 20(3), 461–476.

    Article  Google Scholar 

  • Greene, W. H. (2012). Econometric analysis (7th ed.). Upper Saddle River, NJ, USA: Pearson Education, Prentice Hall.

    Google Scholar 

  • Griffin, T. W. (2010). The spatial analysis of yield data. In M. Oliver (Ed.), Geostatistical applications for precision agriculture (p. 295p). Dordrecht, Netherlands: Springer.

    Google Scholar 

  • Griffin, T. W., Brown, J. P., & Lowenberg-DeBoer, J. (2007). Yield monitor data analysis protocol: A primer in the management and analysis of Precision Agriculture Data. Purdue University. Retrieved November 16, 2019, from https://ssrn.com/abstract=2891888.

  • Griffin, T. W., Dobbins, C. L., Vyn, T. J., Florax, R. J. G. M., & Lowenberg-DeBoer, J. (2008). Spatial analysis of yield monitor data: Case studies of on-farm trials and farm management decision making. Precision Agriculture, 9(5), 269–283.

    Article  Google Scholar 

  • Griffin, T. W., Mark, T. B., Dobbins, C. L., & Lowenberg-DeBoer, J. (2014). Estimating whole farm costs of conducting on-farm research: A linear programming approach. International Journal of Agricultural Management, 4(1), 21–27.

    Google Scholar 

  • Griffin, T. W., & Yeager, E. A. (2019). How quickly do farmers adopt technology? A duration analysis. In J. V. Stafford (Ed.) Precision agriculture’19. 12th European conference on precision agriculture (pp. 843–849). Wageningen, The Netherlands: Wageningen Academic Publishers.

  • Hartsock, N. J., Mueller, T. G., Karathanasis, A. D., & Cornelius, P. L. (2005). Interpreting soil electrical conductivity and terrain attribute variability with soil surveys. Precision Agriculture, 6(1), 53–72.

    Article  Google Scholar 

  • Hurley, T. M., Oishi, K., & Malzer, G. L. (2005). Estimating the potential value of variable rate nitrogen applications: A comparison of spatial econometric and geostatistical models. Journal of Agricultural and Resource Economics, 30(2), 231–249.

    Google Scholar 

  • Jiang, P., & Thelen, K. D. (2004). Effect of soil and topographic properties on crop yield in a north-central corn-soybean cropping system. Agronomy Journal, 96(1), 252–258.

    Article  Google Scholar 

  • Kaspar, T. C., Pulido, D. J., Fenton, T. E., Colvin, T. S., Karlen, D. L., Jaynes, D. B., et al. (2004). Relationship of corn and soybean yield to soil and terrain properties. Agronomy Journal, 96(3), 700–709.

    Article  CAS  Google Scholar 

  • Kelejian, H., & Prucha, I. (1998). A generalized spatial two stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances. Journal of Real Estate Finance and Economics, 17(1), 99–121.

    Article  Google Scholar 

  • Kelejian, H. H., & Prucha, I. R. (1999). A generalized moments estimator for the autoregressive parameter in a spatial model. International Economic Review, 40, 509–533.

    Article  Google Scholar 

  • Kelejian, H. H., & Prucha, I. R. (2010). Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances. Journal of Econometrics, 157(1), 53–67.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kravchenko, A. N., Bullock, D. G., & Boast, C. W. (2000). Joint multifractal analysis of crop yield and terrain slope. Agronomy Journal, 92(6), 1279–1290.

    Article  Google Scholar 

  • Lambert, D. M., Lowenberg-DeBoer, J., & Bongiovanni, R. (2004). A comparison of four spatial regression models for yield monitor data: A case study from Argentina. Precision Agriculture, 5, 579–600.

    Article  Google Scholar 

  • LeSage, J., & Pace, R. K. (2009). Introduction to spatial econometrics (1st ed., p. 394). Boca Raton, FL, USA: Taylor & Francis.

    Book  Google Scholar 

  • Liu, Z., Griffin, T. W., Kirkpatrick, T. L., & Monfort, W. S. (2015). Spatial econometric approaches to site-specific nematode management strategies. Precision Agriculture, 16(5), 587–600.

    Article  Google Scholar 

  • Long, D. S., & McCallum, J. D. (2015). On-combine, multi-sensor data collection for post-harvest assessment of environmental stress in wheat. Precision Agriculture, 16(5), 492–504.

    Article  Google Scholar 

  • Miao, Y., Mulla, D. J., & Robert, P. C. (2006). Spatial variability of soil properties, corn quality and yield in two Illinois, USA fields: Implications for precision corn management. Precision Agriculture, 7(1), 5–20.

    Article  Google Scholar 

  • Miller, N. J., Griffin, T. W., Ciampitti, I., & Sharda, A. (2019). Farm adoption of embodied knowledge and information intensive precision agriculture technology bundles. Precision Agriculture, 20(2), 348–361.

    Article  Google Scholar 

  • Papadakis, J. S. (1937). Methode statistique pour des experiences sur champs [Statistical methods for field experiments]. Bulletin de l‘Institut de l’Amelioration des Plantes, Thessaloniki (Greece), 23, 1–30.

    Google Scholar 

  • Selle, M. L., Steinsland, I., Hickey, J. M., & Gorjanc, G. (2019). Modelling spatial variation in agricultural field trials with INLA. bioRxiv. https://doi.org/10.1101/612036.

    Article  Google Scholar 

  • Sudduth, K. A., Drummond, S. T., & Myers, D. B. (2012). Yield Editor 2.0: Software for automated removal of yield map errors. Paper no. 121338343. St. Joseph, MI, USA: ASABE. Retrieved November 16, 2019, from http://extension.missouri.edu/sare/documents/ASABEYieldEditor2012.pdf.

  • Thomas, I. A., Jordan, P., Shine, O., Fenton, O., Mellander, P.-E., Dunlop, P., et al. (2017). Defining optimal DEM resolutions and point densities for modelling hydrologically sensitive areas in agricultural catchments dominated by microtopography. International Journal of Applied Earth Observation and Geoinformation, 54, 38–52.

    Article  Google Scholar 

  • Trevisan, R. G., Bullock, D. S., & N. F. Martin. (2019). Site-specific treatment responses in on-farm precision experimentation. Preprints. Retrieved November 18, 2019, from https://doi.org/10.20944/preprints201902.0007.v1.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry Griffin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Griffin, T., Lowenberg-DeBoer, J. Modeling local terrain attributes in landscape-scale site-specific data using spatially lagged independent variable via cross regression. Precision Agric 21, 937–954 (2020). https://doi.org/10.1007/s11119-019-09702-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-019-09702-5

Keywords

Navigation