Skip to main content
Log in

Vegetation detection and discrimination within vegetable plasticulture row-middles using a convolutional neural network

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Weed control between plastic covered, raised beds in Florida vegetable crops relies predominantly on herbicides. Broadcast applications of post-emergence herbicides are unnecessary due to the general patchy distribution of weed populations. Development of precision herbicide sprayers to apply herbicides where weeds occur would result in input reductions. The objective of the study was to test a state-of-the-art object detection convolutional neural network, You Only Look Once 3 (YOLOV3), to detect vegetation both indiscriminately (1-class network) and to detect and discriminate three classes of vegetation commonly found within Florida vegetable plasticulture row-middles (3-class network). Vegetation was discriminated into three categories: broadleaves, sedges and grasses. The 3-class network (Fscore = 0.95) outperformed the 1-class network (Fscore = 0.93) in overall vegetation detection. The increase in target variability when combining classes increased and potentially negated benefits from pooling classes into a single target (and increasing the available data per class). The 3-class network Fscores for grasses, sedges and broadleaves were 0.96, 0.96 and 0.93 respectively. Recall was the limiting factor for all classes. With consideration to how much of the plant was identified (broadleaves and grasses), the 3-class network (Fscore = 0.93) outperformed the 1-class network (Fscore = 0.79). The 1-class network struggled to detect grassy weed species (recall = 0.59). Use of YOLOV3 as an object detector for discrimination of vegetation classes is a feasible option for incorporation into precision applicators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ball, J. E., Anderson, D. T., & Chan, C. S. (2017). A comprehensive survey of deep learning in remote sensing: theories, tools and challenges for the community. Journal of Applied Remote Sensing,11(4), 1–54. https://doi.org/10.1117/1.JRS.11.042601.

    Article  Google Scholar 

  • Bedford, I. D., Kelly, A., Banks, G. K., Briddon, R. W., Cenis, J. L., & Markham, P. G. (1998). Solanum nigrum: An indigenous weed reservoir for a tomato yellow leaf curl geminivirus in southern Spain. European Journal of Plant Pathology,104, 221–222. https://doi.org/10.1023/A:1008627419450.

    Article  Google Scholar 

  • Bewick, T. A., Kostewicz, S. R., Stall, W. M., Shilling, D. G., & Smith, K. (1990). Interaction of cupric hydroxide, paraquat, and biotype of American black nightshade (Solanum americanum). Weed Science,38(6), 634–638. https://doi.org/10.1017/S0043174500051626.

    Article  CAS  Google Scholar 

  • Boranno, A. R. (1996). Weed management in plasticulture. HortTechnology,6(3), 186–189.

    Article  Google Scholar 

  • Buker, R. S., Steed, S. T., & Stall, W. M. (2002). Confirmation and control of a paraquat-tolerant goosegrass (Eleusine indica) biotype. Weed Technology,16, 309–313.

    Article  CAS  Google Scholar 

  • dos Santos Ferreira, A., Matte Freitas, D., Gonçalves da Silva, G., Pistori, H., & Theophilo Folhes, M. (2017). Weed detection in soybean crops using ConvNets. Computers and Electronics in Agriculture,143, 314–324. https://doi.org/10.1016/j.compag.2017.10.027.

    Article  Google Scholar 

  • Dyrmann, M., Karstoft, H., & Midtiby, H. S. (2016). Plant species classification using deep convolutional neural network. Biosystems Engineering,151, 72–80. https://doi.org/10.1016/j.biosystemseng.2016.08.024.

    Article  Google Scholar 

  • Dyrmann, M., Jørgensen, R.N., Midtiby, H.S. (2017) RoboWeedSupport - Detection of weed locations in leaf occluded cereal crops using a fully convolutional neural network. In J A Taylor, D Cammarano, A Prashar, A Hamilton (Eds.) Proceedings of the 11th European Conference on Precision Agriculture. Advances in Animal Biosciences, 8, 842–847.

  • Dyrmann, M., Skovsen, S., Laursen, M.S., Jørgensen, R.N. (2018) Using a fully convolutional neural network for detecting locations of weeds in images from cereal fields. In The 14th International Conference on Precision Agriculture. Retrieved March 2019 from https://www.ispag.org/proceedings/?action=abstract&id=5081&search=years.

  • Fennimore, S. A., Slaughter, D. C., Siemens, M. C., Leon, R. G., & Saber, M. N. (2016). Technology for automation of weed control in specialty crops. Weed Technology,30, 823–837. https://doi.org/10.1614/WT-D-16-00070.1.

    Article  Google Scholar 

  • Freeman, S., Horowitz, S., & Sharon, A. (2001). Pathogenic and nonpathogenic lifestyles in Colletotrichum acutatum from strawberry and other plants. Phytopathology,91, 986–992. https://doi.org/10.1094/PHYTO.2001.91.10.986.

    Article  CAS  PubMed  Google Scholar 

  • Gilreath, J. P., & Santos, B. M. (2004). Efficacy of methyl bromide alternatives on purple nutsedge (Cyperus rotundus) control in tomato and pepper. Weed Technology,18, 341–345. https://doi.org/10.1614/WT-03-086R2.

    Article  CAS  Google Scholar 

  • Grinblat, G. L., Uzal, L. C., Larese, M. G., & Granitto, P. M. (2016). Deep learning for plant identification using vein morphological patterns. Computers and Electronics in Agriculture,127, 418–424. https://doi.org/10.1016/j.compag.2016.07.003.

    Article  Google Scholar 

  • Hoiem, D., Chodpathumwan, Y., & Dai, Q. (2012). Diagnosing error in object detectors. In A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, & C. Schmid (Eds.), Computer vision—ECCV 2012 (pp. 340–353). Berlin, Germany: Springer.

    Chapter  Google Scholar 

  • Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature,521, 436–444. https://doi.org/10.1038/nature14539.

    Article  CAS  PubMed  Google Scholar 

  • Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., et al. (2014). Microsoft COCO: Common objects in context. Accessed Sept 11, 2018, from https://arxiv.org/abs/1405.0312.

  • Milioto, A., Lottes, P., Stachniss, C. (2017). Real-time blob-wise sugar beet vs weeds classification for monitoring fields using convolutional neural networks. In ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences (pp. 41–48). Bonn, Germany: International Society for Photogrammetry and Remote Sensing.

    Article  Google Scholar 

  • Redmon, J. (2016). Darknet: open source neural networks in C (2013-2016). Accessed Sept 10, 2018, from http://pjreddie.com/darknet/.

  • Redmon, J., Divvala, S., Girshick, R., Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (pp. 779–788). Las Vegas, NV, USA: IEEE Computer Society.

  • Redmon, J., Farhadi, A. (2018). YOLOv3: An incremental improvement. arXiv Preprint arXiv:1804.02767. Accessed Sept 10, 2018, from https://arxiv.org/abs/1804.02767.

  • Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks,61, 85–117. https://doi.org/10.1016/j.neunet.2014.09.003.

    Article  PubMed  Google Scholar 

  • Sharpe, S. M., Schumann, A. W., & Boyd, N. S. (2018). Detection of Carolina geranium (Geranium carolinianum) growing in competition with strawberry using convolutional neural networks. Weed Science,67, 239–245. https://doi.org/10.1017/wsc.2018.66.

    Article  Google Scholar 

  • Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing and Management,45, 427–437. https://doi.org/10.1016/j.ipm.2009.03.002.

    Article  Google Scholar 

  • Teimouri, N., Dyrmann, M., Nielsen, P., Mathiassen, S., Somerville, G., & Jørgensen, R. (2018). Weed growth stage estimator using deep convolutional neural networks. Sensors,18(1580), 1–13. https://doi.org/10.3390/s18051580.

    Article  Google Scholar 

  • Townshend, J. L., & Davidson, T. R. (1960). Some weed hosts of pratylenchus penetrans in premier strawberry plantations. Canadian Journal of Botany,38, 267–273. https://doi.org/10.1139/b60-027.

    Article  Google Scholar 

  • United States Department of Agriculture [USDA] (2018a) National Agricultural Statistics Service. Accessed Aug 22, 2018, from https://quickstats.nass.usda.gov/.

  • United States Department of Agriculture [USDA] (2018b) Soil Survey Staff, Natural Resources Conservation Service, Web Soil Survey. Accessed Aug 30, 2018, from https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx.

  • Vrindts, E., Baerdemaeker, J. D. E., & Ramon, H. (2002). Weed detection using canopy reflection. Precision Agriculture,3, 63–80. https://doi.org/10.1023/A:1013326304427.

    Article  Google Scholar 

  • Webster, T.M. (2014). Weed survey—southern states 2014. Vegetable, fruit and nut crop subsection. In Proceedings of the Southern Weed Science Society 67th Annual Meeting (pp. 288). Westminster, CO, USA: Southern Weed Science Society.

  • Zhang, Y., Staab, E. S., Slaughter, D. C., Giles, D. K., & Downey, D. (2012). Automated weed control in organic row crops using hyperspectral species identification and thermal micro-dosing. Crop Protection,41, 96–105. https://doi.org/10.1016/j.cropro.2012.05.007.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan S. Boyd.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharpe, S.M., Schumann, A.W., Yu, J. et al. Vegetation detection and discrimination within vegetable plasticulture row-middles using a convolutional neural network. Precision Agric 21, 264–277 (2020). https://doi.org/10.1007/s11119-019-09666-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-019-09666-6

Keywords

Navigation